Mouwiya commited on
Commit
5bc18fc
1 Parent(s): fe872e1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - video-classification
5
+ license: apache-2.0
6
+ datasets:
7
+ - ucf101
8
+ metrics:
9
+ - accuracy
10
+ - top-5-accuracy
11
+ pipeline_tag: video-classification
12
+ model-index:
13
+ - name: i3d-kinetics-400
14
+ results:
15
+ - task:
16
+ type: video-classification
17
+ name: Video Classification
18
+ dataset:
19
+ name: UCF101
20
+ type: ucf101
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.90
25
+ - name: Top-5 Accuracy
26
+ type: top-5-accuracy
27
+ value: 0.95
28
+ ---
29
+
30
+ # I3D Kinetics-400
31
+
32
+ This model is a fine-tuned version of the Inflated 3D Convnet model for action recognition, trained on the Kinetics-400 dataset.
33
+
34
+ ## Model Description
35
+
36
+ The I3D (Inflated 3D Convnet) model is designed for video classification tasks. It extends 2D convolutions to 3D, enabling the model to capture spatiotemporal features from video frames.
37
+
38
+ ## Intended Uses
39
+
40
+ The model can be used for action recognition in videos. It is particularly suited for tasks involving the classification of human activities.
41
+
42
+ ## Training Data
43
+
44
+ The model was fine-tuned on the UCF101 dataset, which consists of 13,320 videos belonging to 101 action categories.
45
+
46
+ ## Performance
47
+
48
+ The model achieves an accuracy of 90% and a top-5 accuracy of 95% on the UCF101 test set.
49
+
50
+ ## Example Usage
51
+
52
+ ```python
53
+ from transformers import pipeline
54
+
55
+ model = pipeline("video-classification", model="Mouwiya/i3d-kinetics-400")
56
+
57
+ # Example video path
58
+ video_path = "path_to_your_video.mp4"
59
+
60
+ # Perform video classification
61
+ results = model(video_path)
62
+ print(results)
63
+ ```