|
from transformers import PretrainedConfig |
|
|
|
|
|
class QiDeBERTaConfig(PretrainedConfig): |
|
model_type = "QiDeBERTa" |
|
attribute_map = { |
|
"hidden_size": "d_model", |
|
"num_attention_heads": "num_heads", |
|
"num_hidden_layers": "num_layers", |
|
"intermediate_size": "d_ff", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=25500, |
|
d_model=1024, |
|
num_layers=24, |
|
num_heads=16, |
|
d_ff=4096, |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-7, |
|
relative_attention=True, |
|
max_relative_positions=-1, |
|
classifier_num_labels=-1, |
|
unk_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
pad_token_id=3, |
|
mask_token_id=4, |
|
position_biased_input=False, |
|
position_buckets=256, |
|
pos_att_type="p2c|c2p", |
|
share_att_key=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.d_model = d_model |
|
self.num_layers = num_layers |
|
self.num_heads = num_heads |
|
self.d_ff = d_ff |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.relative_attention = relative_attention |
|
self.max_relative_positions = max_relative_positions |
|
self.classifier_num_labels = classifier_num_labels |
|
self.unk_token_id = unk_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.mask_token_id = mask_token_id |
|
self.position_biased_input = position_biased_input |
|
self.share_att_key = share_att_key |
|
self.position_buckets = position_buckets |
|
|
|
|
|
if isinstance(pos_att_type, str): |
|
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] |
|
|
|
self.pos_att_type = pos_att_type |
|
self.vocab_size = vocab_size |
|
self.layer_norm_eps = layer_norm_eps |
|
|
|
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", d_model) |
|
|