MohammadKhosravi's picture
Update README.md
7804ebb verified
metadata
library_name: transformers
language:
  - fa
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper large v3 - Mohammad Khosravi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: fa
          split: None
          args: 'config: fa, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 26.865816602611243

Whisper large v3 - Mohammad Khosravi

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2444
  • Wer: 26.8658

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1817 0.4296 1000 0.3223 35.6097
0.1224 0.8591 2000 0.2781 31.9537
0.0703 1.2887 3000 0.2761 31.3946
0.057 1.7182 4000 0.2458 27.7885
0.0263 2.1478 5000 0.2444 26.8658

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0