fix KTransformers tutorial location
Browse files
README.md
CHANGED
|
@@ -186,7 +186,7 @@ We recommend using [vLLM](https://docs.vllm.ai/en/stable/) to serve MiniMax-M2.
|
|
| 186 |
|
| 187 |
### KTransformers
|
| 188 |
|
| 189 |
-
We recommend using [KTransformers](https://github.com/kvcache-ai/ktransformers) to serve MiniMax-M2.1. KTransformers provides efficient day-0 support for MiniMax-M2.1 model and can run the native weights with **≥32GB VRAM** and **≥256GB DRAM**. For installation and usage, see [KTransformers MiniMax-M2.1 Tutorial](https://github.com/kvcache-ai/ktransformers/blob/main/doc/en/MiniMax-M2.1-Tutorial.md).
|
| 190 |
|
| 191 |
### MLX
|
| 192 |
|
|
@@ -217,4 +217,4 @@ Please refer to our [Tool Calling Guide](https://huggingface.co/MiniMaxAI/MiniMa
|
|
| 217 |
|
| 218 |
# Contact Us
|
| 219 |
|
| 220 |
-
Contact us at [model@minimax.io](mailto:model@minimax.io) | [WeChat](https://github.com/MiniMax-AI/MiniMax-AI.github.io/blob/main/images/wechat-qrcode.jpeg).
|
|
|
|
| 186 |
|
| 187 |
### KTransformers
|
| 188 |
|
| 189 |
+
We recommend using [KTransformers](https://github.com/kvcache-ai/ktransformers) to serve MiniMax-M2.1. KTransformers provides efficient day-0 support for MiniMax-M2.1 model and can run the native weights with **≥32GB VRAM** and **≥256GB DRAM**. For installation and usage, see [KTransformers MiniMax-M2.1 Tutorial](https://github.com/kvcache-ai/ktransformers/blob/main/doc/en/kt-kernel/MiniMax-M2.1-Tutorial.md).
|
| 190 |
|
| 191 |
### MLX
|
| 192 |
|
|
|
|
| 217 |
|
| 218 |
# Contact Us
|
| 219 |
|
| 220 |
+
Contact us at [model@minimax.io](mailto:model@minimax.io) | [WeChat](https://github.com/MiniMax-AI/MiniMax-AI.github.io/blob/main/images/wechat-qrcode.jpeg).
|