AntonV HF Staff commited on
Commit
1f5d476
·
1 Parent(s): 200351b

update docs

Browse files
docs/transformers_deploy_guide.md CHANGED
@@ -17,7 +17,7 @@ The deployment process is illustrated below using MiniMax-M2.1 as an example.
17
 
18
  - Python: 3.9 - 3.12
19
 
20
- - Transformers: 4.57.1
21
 
22
  - GPU:
23
 
@@ -32,7 +32,7 @@ It is recommended to use a virtual environment (such as **venv**, **conda**, or
32
  We recommend installing Transformers in a fresh Python environment:
33
 
34
  ```bash
35
- uv pip install transformers==4.57.1 torch accelerate --torch-backend=auto
36
  ```
37
 
38
  Run the following Python script to run the model. Transformers will automatically download and cache the MiniMax-M2.1 model from Hugging Face.
@@ -46,7 +46,6 @@ MODEL_PATH = "MiniMaxAI/MiniMax-M2.1"
46
  model = AutoModelForCausalLM.from_pretrained(
47
  MODEL_PATH,
48
  device_map="auto",
49
- trust_remote_code=True,
50
  )
51
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
52
 
@@ -58,7 +57,7 @@ messages = [
58
 
59
  model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
60
 
61
- generated_ids = model.generate(model_inputs, max_new_tokens=100, generation_config=model.generation_config)
62
 
63
  response = tokenizer.batch_decode(generated_ids)[0]
64
 
@@ -77,7 +76,7 @@ export HF_ENDPOINT=https://hf-mirror.com
77
 
78
  ### MiniMax-M2 model is not currently supported
79
 
80
- Please check that trust_remote_code=True.
81
 
82
  ## Getting Support
83
 
 
17
 
18
  - Python: 3.9 - 3.12
19
 
20
+ - Transformers: 5.0.0.dev0
21
 
22
  - GPU:
23
 
 
32
  We recommend installing Transformers in a fresh Python environment:
33
 
34
  ```bash
35
+ uv pip install git+https://github.com/huggingface/transformers torch accelerate
36
  ```
37
 
38
  Run the following Python script to run the model. Transformers will automatically download and cache the MiniMax-M2.1 model from Hugging Face.
 
46
  model = AutoModelForCausalLM.from_pretrained(
47
  MODEL_PATH,
48
  device_map="auto",
 
49
  )
50
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
51
 
 
57
 
58
  model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
59
 
60
+ generated_ids = model.generate(**model_inputs, max_new_tokens=100, generation_config=model.generation_config)
61
 
62
  response = tokenizer.batch_decode(generated_ids)[0]
63
 
 
76
 
77
  ### MiniMax-M2 model is not currently supported
78
 
79
+ Please check that you have installed transformers with a version that supports this model.
80
 
81
  ## Getting Support
82
 
docs/transformers_deploy_guide_cn.md CHANGED
@@ -17,7 +17,7 @@
17
 
18
  - Python:3.9 - 3.12
19
 
20
- - Transformers: 4.57.1
21
 
22
  - GPU:
23
 
@@ -32,7 +32,7 @@
32
  建议在全新的 Python 环境中安装 Transformers:
33
 
34
  ```bash
35
- uv pip install transformers==4.57.1 torch accelerate --torch-backend=auto
36
  ```
37
 
38
  运行如下 Python 命令运行模型,Transformers 会自动从 Huggingface 下载并缓存 MiniMax-M2.1 模型。
@@ -46,7 +46,6 @@ MODEL_PATH = "MiniMaxAI/MiniMax-M2.1"
46
  model = AutoModelForCausalLM.from_pretrained(
47
  MODEL_PATH,
48
  device_map="auto",
49
- trust_remote_code=True,
50
  )
51
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
52
 
@@ -58,7 +57,7 @@ messages = [
58
 
59
  model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
60
 
61
- generated_ids = model.generate(model_inputs, max_new_tokens=100, generation_config=model.generation_config)
62
 
63
  response = tokenizer.batch_decode(generated_ids)[0]
64
 
 
17
 
18
  - Python:3.9 - 3.12
19
 
20
+ - Transformers: 5.0.0.dev0
21
 
22
  - GPU:
23
 
 
32
  建议在全新的 Python 环境中安装 Transformers:
33
 
34
  ```bash
35
+ uv pip install git+https://github.com/huggingface/transformers torch accelerate
36
  ```
37
 
38
  运行如下 Python 命令运行模型,Transformers 会自动从 Huggingface 下载并缓存 MiniMax-M2.1 模型。
 
46
  model = AutoModelForCausalLM.from_pretrained(
47
  MODEL_PATH,
48
  device_map="auto",
 
49
  )
50
  tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
51
 
 
57
 
58
  model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
59
 
60
+ generated_ids = model.generate(**model_inputs, max_new_tokens=100, generation_config=model.generation_config)
61
 
62
  response = tokenizer.batch_decode(generated_ids)[0]
63