Michelvh's picture
peft-finetune-flan-t5-mc-question-generation
def8480
|
raw
history blame
2.93 kB
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
model-index:
- name: peft-finetune-flan-t5-mc-question-generation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-finetune-flan-t5-mc-question-generation
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2907 | 0.13 | 100 | 1.7315 |
| 1.8012 | 0.25 | 200 | 1.3366 |
| 1.5077 | 0.38 | 300 | 1.2346 |
| 1.419 | 0.51 | 400 | 1.2027 |
| 1.3772 | 0.64 | 500 | 1.1884 |
| 1.3566 | 0.76 | 600 | 1.1770 |
| 1.3348 | 0.89 | 700 | 1.1696 |
| 1.3307 | 1.02 | 800 | 1.1624 |
| 1.3247 | 1.15 | 900 | 1.1586 |
| 1.3139 | 1.27 | 1000 | 1.1537 |
| 1.3048 | 1.4 | 1100 | 1.1507 |
| 1.3045 | 1.53 | 1200 | 1.1476 |
| 1.2999 | 1.65 | 1300 | 1.1451 |
| 1.2978 | 1.78 | 1400 | 1.1425 |
| 1.2903 | 1.91 | 1500 | 1.1407 |
| 1.2897 | 2.04 | 1600 | 1.1409 |
| 1.2881 | 2.16 | 1700 | 1.1386 |
| 1.2845 | 2.29 | 1800 | 1.1374 |
| 1.2749 | 2.42 | 1900 | 1.1360 |
| 1.2846 | 2.55 | 2000 | 1.1349 |
| 1.281 | 2.67 | 2100 | 1.1339 |
| 1.282 | 2.8 | 2200 | 1.1331 |
| 1.2786 | 2.93 | 2300 | 1.1326 |
| 1.2799 | 3.06 | 2400 | 1.1322 |
| 1.2777 | 3.18 | 2500 | 1.1320 |
| 1.2767 | 3.31 | 2600 | 1.1316 |
| 1.2716 | 3.44 | 2700 | 1.1313 |
| 1.2762 | 3.56 | 2800 | 1.1309 |
| 1.2723 | 3.69 | 2900 | 1.1305 |
| 1.2741 | 3.82 | 3000 | 1.1304 |
| 1.2762 | 3.95 | 3100 | 1.1306 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3