Safetensors
soumyatghosh's picture
Upload folder using huggingface_hub
4527b5f verified
"""
Module: tokenization.py
This module provides a tokenization pipeline for preprocessed single-cell RNA sequencing (scRNA-seq) data.
It converts gene expression data stored in AnnData format into tokenized sequences that can
be used for downstream machine learning tasks, such as masked language modeling or classification.
Main Features:
- Tokenizes gene expression data into integer tokens using a custom GeneTokenizer.
- Supports additional biological annotations (e.g., disease, tissue, cell type, sex).
- Handles both top-k and random gene selection for tokenization.
- Configurable via JSON-based hyperparameters or TokenizationArgs objects.
- Saves tokenized data in Hugging Face Dataset format for efficient processing.
Dependencies:
- anndata, numpy, torch, datasets, tqdm
Usage:
- Run this script as a standalone program with a configuration file specifying the hyperparameters.
- Import the `tokenize` function and call it with the data path, metadata path, and tokenization arguments.
"""
import gc
import os
import json
import random
import shutil
from argparse import ArgumentParser
from typing import Union
import anndata as ad
import numpy as np
import torch
from datasets import Dataset, load_from_disk
from tqdm import tqdm
from teddy.tokenizer.gene_tokenizer import GeneTokenizer
from teddy.tokenizer.tokenization_args import TokenizationArgs
###############################################################################
# Updated Functions
###############################################################################
def _bin_values(vals_list, tokenization_args, no_sorting=False):
"""
Bins expression values into specified bins, assigning bin 0 to non-expressed genes
when `include_zero_genes` is True.
no_sorting=False => "positional chunk" approach for topk-sorted arrays - provided data_processing is expected to be sorted through topk (input expression values).
no_sorting=True => simple bucketize approach ignoring the topk order - provided data_processing is not sorted (labels).
"""
binned_vals = []
for vals in vals_list:
if isinstance(vals, np.ndarray):
vals = torch.tensor(vals)
vals_to_bin = vals
# Original binning approach
if not no_sorting:
# "positional chunk" approach from the original code
num_repetitions = max(1, len(vals_to_bin) // tokenization_args.bins)
bin_pattern = torch.arange(0, tokenization_args.bins).unsqueeze(1).repeat(1, num_repetitions).flatten()
# slice or pad to match the length of vals_to_bin
if len(bin_pattern) > len(vals_to_bin):
bin_pattern = bin_pattern[-len(vals_to_bin) :]
else:
extra = len(vals_to_bin) - len(bin_pattern)
if extra > 0:
bin_pattern = torch.cat([torch.zeros(extra), bin_pattern])
bin_pattern = bin_pattern.flip(0)
binned_vals.append(bin_pattern)
else:
if len(vals_to_bin) > 0:
bin_edges = torch.linspace(vals_to_bin.min(), vals_to_bin.max(), steps=tokenization_args.bins + 1)
binned_non_zero_vals = torch.bucketize(vals_to_bin, bin_edges)
binned_non_zero_vals = torch.clamp(binned_non_zero_vals, min=1)
binned_tensor = binned_non_zero_vals.float()
binned_vals.append(binned_tensor)
else:
binned_tensor = torch.zeros_like(vals_to_bin, dtype=torch.float)
binned_vals.append(binned_tensor)
return binned_vals
def _rank_continuous(vals, tokenization_args):
"""
Ranks gene expression values in the range [-1, 1].
"""
if isinstance(vals, np.ndarray):
vals = torch.tensor(vals)
if len(vals) > 0:
ranked_vals = torch.linspace(-1, 1, steps=len(vals)).flip(0)
else:
ranked_vals = vals
return ranked_vals
def _prepare_tokenizer_args(tokenization_args: Union[dict, TokenizationArgs]):
"""
Prepares and validates tokenization arguments, ensuring reproducibility
by setting random seeds if specified.
"""
if isinstance(tokenization_args, dict):
load_dir = tokenization_args["load_dir"]
save_dir = tokenization_args["save_dir"]
token_args_obj = TokenizationArgs(**tokenization_args)
else:
# It's already TokenizationArgs
load_dir = tokenization_args.load_dir
save_dir = tokenization_args.save_dir
token_args_obj = tokenization_args
# If a random seed is specified, set it for reproducibility
if token_args_obj.gene_seed is not None:
random.seed(token_args_obj.gene_seed)
np.random.seed(token_args_obj.gene_seed)
torch.manual_seed(token_args_obj.gene_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(token_args_obj.gene_seed)
return token_args_obj, load_dir, save_dir
def _check_genes_in_tokenizer(data: ad.AnnData, gene_id_column: str, tokenizer: GeneTokenizer):
"""
Checks if the genes in the dataset are present in the tokenizer's vocabulary.
"""
if gene_id_column == "index":
gene_index = data.var.index
else:
gene_index = data.var[gene_id_column]
# Check membership in vocab
gene_in_vocab = np.where([g in tokenizer.vocab for g in gene_index])[0]
coding_genes = gene_index[gene_in_vocab]
ratio = len(gene_in_vocab) / len(data.var)
if ratio < 0.1:
raise OSError(
f"Only {ratio:.2%} of gene IDs found in tokenizer vocab. " "Check gene_id_column or vocab mismatch."
)
return gene_in_vocab, coding_genes, ratio
def _build_batch_tensors(X_batch: torch.Tensor, token_array: torch.Tensor, token_args, data=None, obs_indices=None):
"""
Build topk or random subsets for each row in X_batch (batch_size x num_genes).
Return gene_list, vals_list, labels_list.
"""
batch_size = X_batch.shape[0]
seq_tokens = token_args.max_seq_len - 1 if token_args.add_cls else token_args.max_seq_len
# If random_genes => pick random subset then topk that subset
if token_args.random_genes:
random_indices = torch.stack([torch.randperm(X_batch.shape[1])[:seq_tokens] for _ in range(batch_size)])
random_vals = torch.gather(X_batch, 1, random_indices)
top_vals, rel_indices = torch.topk(
random_vals, k=min(seq_tokens, random_vals.shape[1]), largest=True, sorted=True
)
# Convert rel_indices => absolute indices
top_indices = torch.gather(random_indices, 1, rel_indices)
else:
# normal topk
top_vals, top_indices = torch.topk(X_batch, k=min(seq_tokens, X_batch.shape[1]), largest=True, sorted=True)
gene_ids = token_array[top_indices]
# If add_cls => prepend a CLS token
if token_args.add_cls:
cls_col = torch.tensor(token_args.cls_token_id).repeat(batch_size, 1)
gene_ids = torch.cat([cls_col, gene_ids], dim=1)
ones_col = torch.ones(batch_size, 1, dtype=top_vals.dtype)
top_vals = torch.cat([ones_col, top_vals], dim=1)
labels_list = None
return gene_ids, top_vals, labels_list, None
###############################################################################
# Main tokenize function
###############################################################################
def tokenize(data_path: str, metadata_path: str, tokenization_args: Union[dict, TokenizationArgs]):
"""
Tokenizes gene expression data stored in AnnData format.
Args:
data_path (str): Path to the AnnData file containing preprocessed gene expression data.
metadata_path (str): Path to the metadata file in JSON format.
tokenization_args (Union[dict, TokenizationArgs]): Configuration for tokenization.
"""
token_args, load_dir, save_dir = _prepare_tokenizer_args(tokenization_args)
# 1) Load GeneTokenizer
tokenizer = GeneTokenizer.from_pretrained(token_args.tokenizer_name_or_path)
if token_args.cls_token_id is None:
token_args.cls_token_id = tokenizer.cls_token_id
# 2) Load AnnData
data = ad.read_h5ad(data_path)
if "processed" not in data.layers:
raise ValueError(f"Missing 'processed' layer in {data_path}")
# 3) Genes in vocab
gene_in_vocab, coding_genes, ratio = _check_genes_in_tokenizer(data, token_args.gene_id_column, tokenizer)
print(f"{ratio:.2%} of genes found in tokenizer vocab")
# 5) Build token array for these genes
token_array = torch.tensor(tokenizer.encode(coding_genes.tolist(), add_special_tokens=False))
# 6) Convert processed layer to dense
X_matrix = data.layers["processed"].toarray()
# 7) Prepare final dictionary => HF Dataset
all_data = {"gene_ids": [], "values": []}
BATCH_SIZE = 512
n_obs = data.shape[0]
for start_idx in tqdm(range(0, n_obs, BATCH_SIZE), desc="Tokenizing in batches"):
end_idx = min(start_idx + BATCH_SIZE, n_obs)
obs_indices = np.arange(start_idx, end_idx)
X_batch = torch.tensor(X_matrix[obs_indices, :][:, gene_in_vocab], dtype=torch.float)
gene_ids_batch, vals_batch, labels_batch, decoder_vals_batch = _build_batch_tensors(
X_batch,
token_array,
token_args,
data=None,
obs_indices=None,
)
final_gene_list = []
final_vals_list = []
final_labels_list = []
if "decoder_values" in data.layers:
final_decoder_vals_list = []
# Filter out zero if needed
# or keep them
for row_idx in range(len(gene_ids_batch)):
g_row = gene_ids_batch[row_idx]
v_row = vals_batch[row_idx]
if labels_batch is not None:
lb_row = labels_batch[row_idx]
else:
lb_row = None
if decoder_vals_batch is not None:
dec_v_row = decoder_vals_batch[row_idx]
else:
dec_v_row = None
if not token_args.include_zero_genes:
nonzero_mask = v_row != 0
g_row = g_row[nonzero_mask]
v_row = v_row[nonzero_mask]
if lb_row is not None:
lb_row = lb_row[nonzero_mask]
if dec_v_row is not None:
dec_v_row = dec_v_row[nonzero_mask]
final_gene_list.append(g_row)
final_vals_list.append(v_row)
final_labels_list.append(lb_row)
if "decoder_values" in data.layers:
final_decoder_vals_list.append(dec_v_row)
# If we do binning or rank => apply them
if token_args.bins and token_args.continuous_rank:
raise ValueError("Should not use bins and continuous_rank simultaneously.")
if token_args.bins:
# possibly do no_sorting if we are binning "labels"
# we only do "no_sorting=True" for labels, but let's keep it simple for now
final_vals_list = _bin_values(final_vals_list, token_args, no_sorting=False)
elif token_args.continuous_rank:
for i, vals in enumerate(final_vals_list):
final_vals_list[i] = _rank_continuous(vals, token_args)
# Add to all_data
for row_idx in range(len(final_gene_list)):
all_data["gene_ids"].append(final_gene_list[row_idx].tolist())
all_data["values"].append(final_vals_list[row_idx].tolist())
if token_args.label_column:
all_data["labels"] = data.obs[token_args.label_column].cat.codes.values.tolist()
# bio_annotations
if token_args.bio_annotations:
with open(token_args.disease_mapping) as f:
disease_mapping = json.load(f)
with open(token_args.tissue_mapping) as f:
tissue_mapping = json.load(f)
with open(token_args.cell_mapping) as f:
cell_mapping = json.load(f)
with open(token_args.sex_mapping) as f:
sex_mapping = json.load(f)
if "disease" not in data.obs.columns:
data.obs["disease"] = "normal"
if "tissue" not in data.obs.columns:
data.obs["tissue"] = "cultured cell"
if "sex" not in data.obs.columns:
data.obs["sex"] = "unknown"
if "cell_type" not in data.obs.columns:
data.obs["cell_type"] = "unknown"
mapped_diseases = [disease_mapping[k] for k in data.obs["disease"].tolist()]
mapped_tissues = [tissue_mapping[k] for k in data.obs["tissue"].tolist()]
mapped_cell_types = [cell_mapping[k] for k in data.obs["cell_type"].tolist()]
mapped_sexes = [sex_mapping[k] for k in data.obs["sex"].tolist()]
all_data["disease"] = tokenizer.encode(mapped_diseases, add_special_tokens=False)
all_data["tissue"] = tokenizer.encode(mapped_tissues, add_special_tokens=False)
all_data["cell_type"] = tokenizer.encode(mapped_cell_types, add_special_tokens=False)
all_data["sex"] = tokenizer.encode(mapped_sexes, add_special_tokens=False)
if token_args.add_disease_annotation:
# We override "labels" with "disease" tokens
all_data["labels"] = all_data["disease"]
del data
gc.collect()
dataset = Dataset.from_dict(all_data)
num_samples = len(dataset)
if token_args.max_shard_samples:
num_shards = num_samples // min(token_args.max_shard_samples, num_samples)
else:
num_shards = 1
# Compute the path of data_path relative to load_dir
relative_data_path = os.path.relpath(data_path, load_dir)
relative_metadata_path = os.path.relpath(metadata_path, load_dir)
# Remove the ".h5ad" extension from data_path if desired
no_extension_data_path = os.path.splitext(relative_data_path)[0]
# Reconstruct the final paths under save_dir
save_tokenized_data_path = os.path.join(save_dir, no_extension_data_path)
save_metadata_path = os.path.join(save_dir, relative_metadata_path)
dataset.save_to_disk(save_tokenized_data_path, num_shards=num_shards)
shutil.copy(metadata_path, save_metadata_path)
###############################################################################
# A simple shard function
###############################################################################
def shard_hf_dataset(data_path: str, metadata_path: str, tokenization_args: Union[dict, TokenizationArgs]):
"""
Shards a Hugging Face Dataset into smaller chunks for efficient storage and processing.
"""
if isinstance(tokenization_args, dict):
load_dir = tokenization_args["load_dir"]
save_dir = tokenization_args["save_dir"]
token_args_obj = TokenizationArgs(**tokenization_args)
else:
load_dir = tokenization_args.load_dir
save_dir = tokenization_args.save_dir
token_args_obj = tokenization_args
all_data = load_from_disk(data_path)
num_samples = len(all_data)
if token_args_obj.max_shard_samples:
num_shards = num_samples // min(token_args_obj.max_shard_samples, num_samples)
else:
num_shards = 1
save_tokenized_data_path = data_path.replace(load_dir, save_dir)
save_metadata_path = metadata_path.replace(load_dir, save_dir)
all_data.save_to_disk(save_tokenized_data_path, num_shards=num_shards)
shutil.copy(metadata_path, save_metadata_path)
###############################################################################
# Main block
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser(description="Tokenize an AnnData file for downstream ML tasks.")
parser.add_argument(
"--data_path",
type=str,
required=True,
help="Path to the .h5ad file containing the preprocessed scRNA-seq data."
)
parser.add_argument(
"--metadata_path",
type=str,
required=True,
help="Path to the JSON file containing metadata."
)
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Path to the JSON file specifying tokenization hyperparameters."
)
args = parser.parse_args()
# Load tokenization arguments from JSON
with open(args.config_path, "r") as f:
tokenization_args = json.load(f)
# Call the tokenize function
tokenize(
data_path=args.data_path,
metadata_path=args.metadata_path,
tokenization_args=tokenization_args
)