MelanieKoe's picture
Model save
1d067ec verified
|
raw
history blame
2.37 kB
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr5e-5_at0.9_da1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-base-pretrained_lr5e-5_at0.9_da1
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0012
- Wer: 0.1794
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 15.834 | 6.1 | 250 | 3.6941 | 1.0 |
| 3.1623 | 12.2 | 500 | 3.3447 | 1.0 |
| 2.81 | 18.29 | 750 | 1.9439 | 0.9983 |
| 0.4575 | 24.39 | 1000 | 1.2543 | 0.2499 |
| 0.1302 | 30.49 | 1250 | 1.5064 | 0.2080 |
| 0.0852 | 36.59 | 1500 | 1.5567 | 0.1995 |
| 0.0618 | 42.68 | 1750 | 1.8019 | 0.1982 |
| 0.0497 | 48.78 | 2000 | 1.8515 | 0.2025 |
| 0.0395 | 54.88 | 2250 | 1.8758 | 0.1897 |
| 0.0301 | 60.98 | 2500 | 1.7991 | 0.1850 |
| 0.0275 | 67.07 | 2750 | 1.9686 | 0.1777 |
| 0.0213 | 73.17 | 3000 | 1.8964 | 0.1884 |
| 0.02 | 79.27 | 3250 | 1.9815 | 0.1854 |
| 0.017 | 85.37 | 3500 | 2.0240 | 0.1790 |
| 0.0157 | 91.46 | 3750 | 1.9606 | 0.1768 |
| 0.0137 | 97.56 | 4000 | 2.0012 | 0.1794 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1