|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v2-base-pretrained_lr5e-5_at0.2_da1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v2-base-pretrained_lr5e-5_at0.2_da1 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0942 |
|
- Wer: 0.1674 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 17.4656 | 3.91 | 250 | 3.8210 | 1.0 | |
|
| 3.2203 | 7.81 | 500 | 3.1655 | 1.0 | |
|
| 2.5403 | 11.72 | 750 | 1.2547 | 0.9979 | |
|
| 0.5746 | 15.62 | 1000 | 0.5996 | 0.5088 | |
|
| 0.2573 | 19.53 | 1250 | 0.7483 | 0.2046 | |
|
| 0.152 | 23.44 | 1500 | 0.9229 | 0.1862 | |
|
| 0.1082 | 27.34 | 1750 | 0.9192 | 0.1833 | |
|
| 0.0748 | 31.25 | 2000 | 1.0565 | 0.1747 | |
|
| 0.0603 | 35.16 | 2250 | 0.9710 | 0.1815 | |
|
| 0.0485 | 39.06 | 2500 | 1.0599 | 0.1704 | |
|
| 0.0399 | 42.97 | 2750 | 1.0942 | 0.1730 | |
|
| 0.034 | 46.88 | 3000 | 1.0842 | 0.1670 | |
|
| 0.0309 | 50.78 | 3250 | 1.0670 | 0.1632 | |
|
| 0.0269 | 54.69 | 3500 | 1.1369 | 0.1649 | |
|
| 0.0244 | 58.59 | 3750 | 1.0229 | 0.1666 | |
|
| 0.0228 | 62.5 | 4000 | 1.0942 | 0.1674 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|