metadata
library_name: transformers
license: mit
base_model: sagorsarker/bangla-bert-base
tags:
- generated_from_trainer
model-index:
- name: bengali_qa_model_AGGRO_V2
results: []
bengali_qa_model_AGGRO_V2
This model is a fine-tuned version of sagorsarker/bangla-bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1885
- Exact Match: 96.0
- F1 Score: 96.3051
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 3407
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 Score |
---|---|---|---|---|---|
6.0684 | 0.0053 | 1 | 6.0629 | 0.0 | 6.2927 |
6.033 | 0.0107 | 2 | 5.9761 | 0.0 | 6.7935 |
6.0144 | 0.0160 | 3 | 5.8037 | 0.0 | 9.7900 |
5.8029 | 0.0214 | 4 | 5.5486 | 0.5263 | 19.3074 |
5.6831 | 0.0267 | 5 | 5.2126 | 2.2556 | 37.8180 |
5.26 | 0.0321 | 6 | 4.7970 | 5.9398 | 49.8764 |
4.8899 | 0.0374 | 7 | 4.3855 | 9.3233 | 55.2670 |
4.5683 | 0.0428 | 8 | 3.9798 | 15.3383 | 59.7750 |
4.0571 | 0.0481 | 9 | 3.5837 | 22.6316 | 63.9729 |
3.6658 | 0.0535 | 10 | 3.2052 | 28.7218 | 66.1381 |
3.3842 | 0.0588 | 11 | 2.8517 | 33.6842 | 68.2625 |
3.0377 | 0.0641 | 12 | 2.5296 | 38.3459 | 69.6544 |
2.933 | 0.0695 | 13 | 2.2425 | 42.1053 | 70.3538 |
2.383 | 0.0748 | 14 | 1.9875 | 45.9398 | 71.7662 |
2.12 | 0.0802 | 15 | 1.7636 | 50.1504 | 73.3768 |
1.7072 | 0.0855 | 16 | 1.5667 | 55.4887 | 75.4763 |
1.7314 | 0.0909 | 17 | 1.3929 | 59.8496 | 77.6552 |
1.4855 | 0.0962 | 18 | 1.2390 | 64.0602 | 80.1659 |
1.4605 | 0.1016 | 19 | 1.1030 | 68.2707 | 82.0848 |
1.4278 | 0.1069 | 20 | 0.9825 | 72.4060 | 84.1071 |
1.1391 | 0.1123 | 21 | 0.8741 | 76.1654 | 85.9345 |
1.2315 | 0.1176 | 22 | 0.7780 | 79.0977 | 87.2864 |
0.9215 | 0.1230 | 23 | 0.6933 | 81.6541 | 88.3887 |
0.7547 | 0.1283 | 24 | 0.6182 | 83.5338 | 89.2823 |
0.717 | 0.1336 | 25 | 0.5517 | 86.2406 | 90.9047 |
1.0054 | 0.1390 | 26 | 0.4950 | 88.1203 | 91.8787 |
0.5741 | 0.1443 | 27 | 0.4465 | 89.3233 | 92.5173 |
0.6248 | 0.1497 | 28 | 0.4053 | 90.3008 | 92.8381 |
0.4378 | 0.1550 | 29 | 0.3709 | 91.2782 | 93.3403 |
0.3546 | 0.1604 | 30 | 0.3421 | 92.2556 | 93.8510 |
0.542 | 0.1657 | 31 | 0.3188 | 92.8571 | 94.1842 |
0.2279 | 0.1711 | 32 | 0.2997 | 93.4586 | 94.3692 |
0.1765 | 0.1764 | 33 | 0.2843 | 93.8346 | 94.5317 |
0.256 | 0.1818 | 34 | 0.2721 | 94.2105 | 94.8025 |
0.2041 | 0.1871 | 35 | 0.2623 | 94.2857 | 94.8878 |
0.292 | 0.1924 | 36 | 0.2545 | 94.4361 | 94.9898 |
0.2241 | 0.1978 | 37 | 0.2484 | 94.7368 | 95.2014 |
0.5822 | 0.2031 | 38 | 0.2434 | 94.8120 | 95.3437 |
0.3077 | 0.2085 | 39 | 0.2394 | 94.9624 | 95.4440 |
0.3954 | 0.2138 | 40 | 0.2362 | 94.9624 | 95.4440 |
0.3814 | 0.2192 | 41 | 0.2337 | 94.9624 | 95.4440 |
0.1033 | 0.2245 | 42 | 0.2317 | 94.9624 | 95.4440 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3