Splend1dchan commited on
Commit
c6536f5
·
verified ·
1 Parent(s): 48a83b6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ license: apache-2.0
4
+ language:
5
+ - zh
6
+ - en
7
+ ---
8
+
9
+ # Model Card for MediaTek Research Breeze-7B-32k-Base-v1_0
10
+
11
+ MediaTek Research Breeze-7B (hereinafter referred to as Breeze-7B) is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use.
12
+
13
+ [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0) is the base model for the Breeze-7B series.
14
+ It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case.
15
+
16
+ [Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
17
+
18
+ [Breeze-7B-32k-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-32k-Base-v1_0) is extended from the base model with more data, base change, and the disabling of the sliding window.
19
+ Roughly speaking, that is equivalent to 44k Traditional Chinese characters.
20
+
21
+ [Breeze-7B-32k-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-32k-Instruct-v1_0) derives from the base model Breeze-7B-32k-Base, making the resulting model amenable to be used as-is for commonly seen tasks.
22
+
23
+
24
+
25
+ Practicality-wise:
26
+ - Breeze-7B-Base expands the original vocabulary with additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).]
27
+ - Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization.
28
+ - Breeze-7B-32k-Instruct can perform tasks at a document level (For Chinese, 20 ~ 40 pages).
29
+
30
+ *A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.*
31
+
32
+ ## Features
33
+
34
+ - Breeze-7B-32k-Base-v1_0
35
+ - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
36
+ - 32k-token context length
37
+
38
+ - Breeze-7B-32k-Instruct-v1_0
39
+ - Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese
40
+ - 32k-token context length
41
+ - Multi-turn dialogue (without special handling for harmfulness)
42
+
43
+ ## Model Details
44
+
45
+ - Breeze-7B-32k-Base-v1_0
46
+ - Pretrained from: [Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v1_0)
47
+ - Model type: Causal decoder-only transformer language model
48
+ - Language: English and Traditional Chinese (zh-tw)
49
+ - Breeze-7B-32k-Instruct-v1_0
50
+ - Finetuned from: [Breeze-7B-32k-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-32k-Base-v1_0)
51
+ - Model type: Causal decoder-only transformer language model
52
+ - Language: English and Traditional Chinese (zh-tw)
53
+
54
+ ## Long-context Performance
55
+
56
+ #### Needle-in-a-haystack Performance
57
+
58
+ We use the passkey retrieval task to test the model's ability to attend to different various depths in a given sequence.
59
+ A key in placed within a long context distracting document for the model to retrieve.
60
+ Breeze-7B-32k-Base clears the tasks with 90+% accuracy,shown in the figure below.
61
+ ![Needle-in-a-haystack Performance]()
62
+
63
+ #### Long-DRCD Performance
64
+
65
+ | **Model/Performance(EM)** | **DRCD** | **DRCD-16k** | **DRCD-32k** | **DRCD-64k** |
66
+ |---------------------------|----------|--------------|--------------|--------------|
67
+ | **Breeze-7B-32k-Base-v1\_0** | 79.73 | 69.68 | 61.55 | 25.82 |
68
+ | **Breeze-7B-Base-v1\_0** | 80.61 | 21.79 | 15.29 | 12.63 |
69
+
70
+
71
+ ## Use in Transformers
72
+
73
+ First install direct dependencies:
74
+ ```
75
+ pip install transformers torch accelerate
76
+ ```
77
+ If you want faster inference using flash-attention2, you need to install these dependencies:
78
+ ```bash
79
+ pip install packaging ninja
80
+ pip install flash-attn
81
+ ```
82
+ Then load the model in transformers:
83
+ ```python
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+ import torch
86
+
87
+ model = AutoModelForCausalLM.from_pretrained(
88
+ "MediaTek-Research/Breeze-7B-32k-Base-v1_0",
89
+ device_map="auto",
90
+ torch_dtype=torch.bfloat16,
91
+ attn_implementation="flash_attention_2" # optional but highly recommended
92
+ )
93
+ from transformers import AutoTokenizer
94
+ tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-32k-Base-v1_0")
95
+ tokenizer.tokenize("你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。")
96
+ # Tokenized results
97
+ # ['▁', '你好', ',', '我', '可以', '幫助', '您', '解決', '各種', '問題', '、', '提供', '資訊', '和', '協助', '您', '完成', '許多', '不同', '的', '任務', '。', '例如', ':', '回答', '技術', '問題', '、', '提供', '建議', '、', '翻譯', '文字', '、', '尋找', '資料', '或', '協助', '您', '安排', '行程', '等', '。', '請', '告訴', '我', '如何', '能', '幫助', '您', '。']
98
+ ```
99
+
100
+
101
+ ## Citation
102
+
103
+ ```
104
+ @article{MediaTek-Research2024breeze7b,
105
+ title={Breeze-7B Technical Report},
106
+ author={Chan-Jan Hsu and Chang-Le Liu and Feng-Ting Liao and Po-Chun Hsu and Yi-Chang Chen and Da-Shan Shiu},
107
+ year={2024},
108
+ eprint={2403.02712},
109
+ archivePrefix={arXiv},
110
+ primaryClass={cs.CL}
111
+ }
112
+ ```