MaziyarPanahi commited on
Commit
8f25530
·
verified ·
1 Parent(s): 5791481

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - chat
7
+ - qwen
8
+ - qwen2
9
+ - finetune
10
+ - chatml
11
+ base_model: dnhkng/RYS-XLarge
12
+ datasets:
13
+ - MaziyarPanahi/truthy-dpo-v0.1-axolotl
14
+ model_name: calme-2.1-rys-78b
15
+ pipeline_tag: text-generation
16
+ inference: false
17
+ model_creator: MaziyarPanahi
18
+ quantized_by: MaziyarPanahi
19
+ ---
20
+
21
+ <img src="./calme-2.webp" alt="Calme-2 Models" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
22
+
23
+ # MaziyarPanahi/calme-2.1-rys-78b
24
+
25
+ This model is a fine-tuned version of the `dnhkng/RYS-XLarge`, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.
26
+
27
+ ## Use Cases
28
+
29
+ This model is suitable for a wide range of applications, including but not limited to:
30
+
31
+ - Advanced question-answering systems
32
+ - Intelligent chatbots and virtual assistants
33
+ - Content generation and summarization
34
+ - Code generation and analysis
35
+ - Complex problem-solving and decision support
36
+
37
+ # ⚡ Quantized GGUF
38
+
39
+ Coming soon!
40
+
41
+
42
+ # 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
43
+
44
+ Coming soon!
45
+
46
+ # Prompt Template
47
+
48
+ This model uses `ChatML` prompt template:
49
+
50
+ ```
51
+ <|im_start|>system
52
+ {System}
53
+ <|im_end|>
54
+ <|im_start|>user
55
+ {User}
56
+ <|im_end|>
57
+ <|im_start|>assistant
58
+ {Assistant}
59
+ ````
60
+
61
+ # How to use
62
+
63
+
64
+ ```python
65
+
66
+ # Use a pipeline as a high-level helper
67
+
68
+ from transformers import pipeline
69
+
70
+ messages = [
71
+ {"role": "user", "content": "Who are you?"},
72
+ ]
73
+ pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.1-rys-78b")
74
+ pipe(messages)
75
+
76
+
77
+ # Load model directly
78
+
79
+ from transformers import AutoTokenizer, AutoModelForCausalLM
80
+
81
+ tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.1-rys-78b")
82
+ model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.1-rys-78b")
83
+ ```
84
+
85
+
86
+ # Ethical Considerations
87
+
88
+ As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.