MaziyarPanahi commited on
Commit
07923f6
1 Parent(s): 49fc0dd

End of training

Browse files
Files changed (2) hide show
  1. README.md +181 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
8
+ model-index:
9
+ - name: Nous-Hermes-2-Mixtral-8x7B-SFT-Wikihow
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
22
+ model_type: MixtralForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ trust_remote_code: true
25
+
26
+ # hub_model_id: MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Function-Calling
27
+ hub_model_id: MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Wikihow
28
+ hf_use_auth_token: true
29
+
30
+ load_in_4bit: true
31
+ strict: false
32
+
33
+ # datasets:
34
+ # - path: Arist12/EABF-ShareGPT-Long-3.5k
35
+ # type: sharegpt
36
+ # conversation: chatml
37
+ # datasets:
38
+ # - path: hypervariance/function-calling-sharegpt
39
+ # type: sharegpt
40
+ # conversation: chatml
41
+ datasets:
42
+ - path: HuggingFaceTB/cosmopedia
43
+ name:
44
+ - wikihow
45
+ type:
46
+ system_prompt: ""
47
+ field_instruction: prompt
48
+ field_output: text
49
+ format: "[INST] {instruction} [/INST]"
50
+ no_input_format: "[INST] {instruction} [/INST]"
51
+
52
+ dataset_prepared_path: last_run_prepared
53
+ val_set_size: 0.1
54
+ output_dir: ./qlora-out-wikihow
55
+
56
+ # save_safetensors: true
57
+
58
+ adapter: qlora
59
+ lora_model_dir:
60
+
61
+ sequence_len: 1024
62
+ sample_packing: true
63
+ pad_to_sequence_len: true
64
+
65
+ lora_r: 32
66
+ lora_alpha: 16
67
+ lora_dropout: 0.05
68
+ lora_target_linear: true
69
+ lora_fan_in_fan_out:
70
+ lora_target_modules:
71
+ # - gate
72
+ - q_proj
73
+ # - k_proj
74
+ - v_proj
75
+ # - o_proj
76
+ # - w1
77
+ # - w2
78
+ # - w3
79
+
80
+ wandb_project:
81
+ wandb_entity:
82
+ wandb_watch:
83
+ wandb_name:
84
+ wandb_log_model:
85
+
86
+ gradient_accumulation_steps: 4
87
+ micro_batch_size: 2
88
+ num_epochs: 1
89
+ optimizer: adamw_bnb_8bit
90
+ lr_scheduler: cosine
91
+ learning_rate: 0.0002
92
+
93
+ train_on_inputs: false
94
+ group_by_length: false
95
+ bf16: auto
96
+ fp16:
97
+ tf32: false
98
+
99
+ gradient_checkpointing: true
100
+ early_stopping_patience:
101
+ resume_from_checkpoint:
102
+ local_rank:
103
+ logging_steps: 1
104
+ xformers_attention:
105
+ flash_attention: true
106
+
107
+ loss_watchdog_threshold: 5.0
108
+ loss_watchdog_patience: 3
109
+
110
+ warmup_steps: 10
111
+ evals_per_epoch: 4
112
+ eval_table_size:
113
+ eval_max_new_tokens: 128
114
+ saves_per_epoch: 1
115
+ debug:
116
+ deepspeed:
117
+ weight_decay: 0.0
118
+ fsdp:
119
+ fsdp_config:
120
+ special_tokens:
121
+ bos_token: "<s>"
122
+ eos_token: "</s>"
123
+ unk_token: "<unk>"
124
+ ```
125
+
126
+ </details><br>
127
+
128
+ # Nous-Hermes-2-Mixtral-8x7B-SFT-Wikihow
129
+
130
+ This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT) on the None dataset.
131
+ It achieves the following results on the evaluation set:
132
+ - Loss: 0.4559
133
+
134
+ ## Model description
135
+
136
+ More information needed
137
+
138
+ ## Intended uses & limitations
139
+
140
+ More information needed
141
+
142
+ ## Training and evaluation data
143
+
144
+ More information needed
145
+
146
+ ## Training procedure
147
+
148
+ ### Training hyperparameters
149
+
150
+ The following hyperparameters were used during training:
151
+ - learning_rate: 0.0002
152
+ - train_batch_size: 2
153
+ - eval_batch_size: 2
154
+ - seed: 42
155
+ - distributed_type: multi-GPU
156
+ - num_devices: 4
157
+ - gradient_accumulation_steps: 4
158
+ - total_train_batch_size: 32
159
+ - total_eval_batch_size: 8
160
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
161
+ - lr_scheduler_type: cosine
162
+ - lr_scheduler_warmup_steps: 10
163
+ - num_epochs: 1
164
+
165
+ ### Training results
166
+
167
+ | Training Loss | Epoch | Step | Validation Loss |
168
+ |:-------------:|:-----:|:----:|:---------------:|
169
+ | 0.8589 | 0.0 | 1 | 0.8705 |
170
+ | 0.5094 | 0.25 | 483 | 0.5009 |
171
+ | 0.4503 | 0.5 | 966 | 0.4734 |
172
+ | 0.4569 | 0.75 | 1449 | 0.4559 |
173
+
174
+
175
+ ### Framework versions
176
+
177
+ - PEFT 0.8.2
178
+ - Transformers 4.38.0.dev0
179
+ - Pytorch 2.2.0+cu121
180
+ - Datasets 2.17.0
181
+ - Tokenizers 0.15.0
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b26ea7b612dd6ea3dd79f5728d427f086d6cf56a56f3b9f11007d2373603494
3
+ size 1938497058