MateiCv's picture
End of training
4d8fd49
|
raw
history blame
3.25 kB
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: spa-eng-pos-tagging-v1.3
    results: []

spa-eng-pos-tagging-v1.3

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1650
  • Accuracy: 0.9471
  • Precision: 0.9372
  • Recall: 0.8815
  • F1: 0.8779
  • Hamming Loss: 0.0529

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming Loss
0.3809 1.0 1744 0.2945 0.8919 0.8798 0.8290 0.8221 0.1081
0.2625 2.0 3488 0.2725 0.8975 0.9004 0.8279 0.8319 0.1025
0.1918 3.0 5232 0.1901 0.9317 0.9224 0.8645 0.8618 0.0683
0.1674 4.0 6976 0.1780 0.9369 0.9319 0.8695 0.8694 0.0631
0.1478 5.0 8720 0.1816 0.9385 0.9303 0.8735 0.8697 0.0615
0.1201 6.0 10464 0.1650 0.9471 0.9372 0.8815 0.8779 0.0529
0.096 7.0 12208 0.1663 0.9493 0.9390 0.8851 0.8806 0.0507
0.0844 8.0 13952 0.1715 0.9500 0.9421 0.8838 0.8815 0.0500
0.0687 9.0 15696 0.1877 0.9502 0.9433 0.8816 0.8811 0.0498
0.0573 10.0 17440 0.1949 0.9483 0.9444 0.8781 0.8799 0.0517
0.0533 11.0 19184 0.1960 0.9544 0.9450 0.8872 0.8847 0.0456
0.0399 12.0 20928 0.2012 0.9565 0.9494 0.8884 0.8876 0.0435
0.031 13.0 22672 0.2119 0.9571 0.9496 0.8889 0.8879 0.0429
0.0292 14.0 24416 0.2213 0.9587 0.9512 0.8906 0.8896 0.0413
0.024 15.0 26160 0.2274 0.9587 0.9517 0.8899 0.8895 0.0413
0.0198 16.0 27904 0.2314 0.9591 0.8894 0.8905 0.8899 0.0409

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3