metadata
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain
datasets:
- MarketingHHM/autotrain-data-predictiveoutcomes_transcripts
co2_eq_emissions:
emissions: 4.830666534700561
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 65215136096
- CO2 Emissions (in grams): 4.8307
Validation Metrics
- Loss: 0.779
- Accuracy: 0.737
- Macro F1: 0.144
- Micro F1: 0.737
- Weighted F1: 0.656
- Macro Precision: 0.175
- Micro Precision: 0.737
- Weighted Precision: 0.650
- Macro Recall: 0.154
- Micro Recall: 0.737
- Weighted Recall: 0.737
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/MarketingHHM/autotrain-predictiveoutcomes_transcripts-65215136096
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("MarketingHHM/autotrain-predictiveoutcomes_transcripts-65215136096", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("MarketingHHM/autotrain-predictiveoutcomes_transcripts-65215136096", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)