Marco-Cheung commited on
Commit
654df5e
·
1 Parent(s): 86c4b24

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.83
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5933
36
+ - Accuracy: 0.83
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 10
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.9825 | 1.0 | 113 | 1.7658 | 0.48 |
69
+ | 1.2943 | 2.0 | 226 | 1.2478 | 0.65 |
70
+ | 0.9837 | 3.0 | 339 | 0.9757 | 0.71 |
71
+ | 0.8201 | 4.0 | 452 | 0.8420 | 0.72 |
72
+ | 0.5363 | 5.0 | 565 | 0.6741 | 0.83 |
73
+ | 0.3417 | 6.0 | 678 | 0.7083 | 0.76 |
74
+ | 0.4129 | 7.0 | 791 | 0.5941 | 0.81 |
75
+ | 0.1681 | 8.0 | 904 | 0.5954 | 0.84 |
76
+ | 0.2398 | 9.0 | 1017 | 0.5819 | 0.85 |
77
+ | 0.1346 | 10.0 | 1130 | 0.5933 | 0.83 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.32.0.dev0
83
+ - Pytorch 2.0.0
84
+ - Datasets 2.1.0
85
+ - Tokenizers 0.13.3