layoutlm-funsd / README.md
ManelR's picture
End of training
c7b408b
metadata
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6978
  • Answer: {'precision': 0.7016216216216217, 'recall': 0.8022249690976514, 'f1': 0.748558246828143, 'number': 809}
  • Header: {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119}
  • Question: {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065}
  • Overall Precision: 0.7149
  • Overall Recall: 0.7852
  • Overall F1: 0.7484
  • Overall Accuracy: 0.7991

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8306 1.0 10 1.6241 {'precision': 0.015978695073235686, 'recall': 0.014833127317676144, 'f1': 0.015384615384615385, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.18994413407821228, 'recall': 0.12769953051643193, 'f1': 0.1527231892195396, 'number': 1065} 0.1009 0.0743 0.0855 0.3533
1.4993 2.0 20 1.2681 {'precision': 0.11957950065703023, 'recall': 0.11248454882571075, 'f1': 0.11592356687898088, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.43696829079659705, 'recall': 0.5305164319248826, 'f1': 0.4792196776929601, 'number': 1065} 0.3192 0.3292 0.3241 0.5668
1.1217 3.0 30 0.9584 {'precision': 0.4690157958687728, 'recall': 0.47713226205191595, 'f1': 0.47303921568627455, 'number': 809} {'precision': 0.08333333333333333, 'recall': 0.025210084033613446, 'f1': 0.038709677419354833, 'number': 119} {'precision': 0.6071741032370953, 'recall': 0.6516431924882629, 'f1': 0.6286231884057971, 'number': 1065} 0.5410 0.5434 0.5422 0.7000
0.8403 4.0 40 0.7788 {'precision': 0.6163265306122448, 'recall': 0.7466007416563659, 'f1': 0.6752375628842929, 'number': 809} {'precision': 0.2127659574468085, 'recall': 0.08403361344537816, 'f1': 0.12048192771084337, 'number': 119} {'precision': 0.6675603217158177, 'recall': 0.7014084507042253, 'f1': 0.6840659340659341, 'number': 1065} 0.6342 0.6829 0.6576 0.7495
0.6807 5.0 50 0.7110 {'precision': 0.6525871172122492, 'recall': 0.7639060568603214, 'f1': 0.7038724373576309, 'number': 809} {'precision': 0.26865671641791045, 'recall': 0.15126050420168066, 'f1': 0.19354838709677416, 'number': 119} {'precision': 0.7077059344552702, 'recall': 0.7502347417840376, 'f1': 0.7283500455788514, 'number': 1065} 0.6696 0.7200 0.6939 0.7799
0.5615 6.0 60 0.6839 {'precision': 0.6663135593220338, 'recall': 0.7775030902348579, 'f1': 0.7176269252709641, 'number': 809} {'precision': 0.3225806451612903, 'recall': 0.16806722689075632, 'f1': 0.22099447513812157, 'number': 119} {'precision': 0.7101214574898785, 'recall': 0.8234741784037559, 'f1': 0.7626086956521739, 'number': 1065} 0.6809 0.7657 0.7208 0.7886
0.4954 7.0 70 0.6647 {'precision': 0.6813304721030042, 'recall': 0.7849196538936959, 'f1': 0.7294658242389431, 'number': 809} {'precision': 0.28865979381443296, 'recall': 0.23529411764705882, 'f1': 0.2592592592592593, 'number': 119} {'precision': 0.7263681592039801, 'recall': 0.8225352112676056, 'f1': 0.7714663143989432, 'number': 1065} 0.6886 0.7722 0.7280 0.7957
0.4479 8.0 80 0.6529 {'precision': 0.6748663101604279, 'recall': 0.7799752781211372, 'f1': 0.7236238532110092, 'number': 809} {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} {'precision': 0.740016992353441, 'recall': 0.8178403755868544, 'f1': 0.7769848349687779, 'number': 1065} 0.6905 0.7667 0.7266 0.8053
0.3961 9.0 90 0.6535 {'precision': 0.6924754634678298, 'recall': 0.7849196538936959, 'f1': 0.7358053302433372, 'number': 809} {'precision': 0.25217391304347825, 'recall': 0.24369747899159663, 'f1': 0.24786324786324784, 'number': 119} {'precision': 0.7459505541346974, 'recall': 0.8215962441314554, 'f1': 0.7819481680071492, 'number': 1065} 0.6980 0.7722 0.7332 0.8020
0.3516 10.0 100 0.6645 {'precision': 0.6899141630901288, 'recall': 0.7948084054388134, 'f1': 0.7386559448592762, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.25210084033613445, 'f1': 0.26785714285714285, 'number': 119} {'precision': 0.7667814113597247, 'recall': 0.8366197183098592, 'f1': 0.8001796138302649, 'number': 1065} 0.7112 0.7847 0.7462 0.8046
0.3197 11.0 110 0.6868 {'precision': 0.6927194860813705, 'recall': 0.799752781211372, 'f1': 0.7423981640849111, 'number': 809} {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} {'precision': 0.7722513089005235, 'recall': 0.8309859154929577, 'f1': 0.8005427408412483, 'number': 1065} 0.7129 0.7863 0.7478 0.7996
0.2986 12.0 120 0.6912 {'precision': 0.6914778856526429, 'recall': 0.792336217552534, 'f1': 0.7384792626728109, 'number': 809} {'precision': 0.3162393162393162, 'recall': 0.31092436974789917, 'f1': 0.3135593220338983, 'number': 119} {'precision': 0.7845057880676759, 'recall': 0.8272300469483568, 'f1': 0.8053016453382084, 'number': 1065} 0.7194 0.7822 0.7495 0.7971
0.2882 13.0 130 0.7016 {'precision': 0.6961748633879782, 'recall': 0.7873918417799752, 'f1': 0.7389791183294663, 'number': 809} {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} {'precision': 0.7696969696969697, 'recall': 0.8347417840375587, 'f1': 0.8009009009009008, 'number': 1065} 0.7142 0.7837 0.7474 0.8028
0.2789 14.0 140 0.6994 {'precision': 0.6989247311827957, 'recall': 0.8034610630407911, 'f1': 0.747556066705003, 'number': 809} {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119} {'precision': 0.7698343504795118, 'recall': 0.8291079812206573, 'f1': 0.7983725135623869, 'number': 1065} 0.7140 0.7878 0.7490 0.7990
0.274 15.0 150 0.6978 {'precision': 0.7016216216216217, 'recall': 0.8022249690976514, 'f1': 0.748558246828143, 'number': 809} {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119} {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} 0.7149 0.7852 0.7484 0.7991

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3