metadata
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
results: []
layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.6978
- Answer: {'precision': 0.7016216216216217, 'recall': 0.8022249690976514, 'f1': 0.748558246828143, 'number': 809}
- Header: {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119}
- Question: {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065}
- Overall Precision: 0.7149
- Overall Recall: 0.7852
- Overall F1: 0.7484
- Overall Accuracy: 0.7991
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.8306 | 1.0 | 10 | 1.6241 | {'precision': 0.015978695073235686, 'recall': 0.014833127317676144, 'f1': 0.015384615384615385, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.18994413407821228, 'recall': 0.12769953051643193, 'f1': 0.1527231892195396, 'number': 1065} | 0.1009 | 0.0743 | 0.0855 | 0.3533 |
1.4993 | 2.0 | 20 | 1.2681 | {'precision': 0.11957950065703023, 'recall': 0.11248454882571075, 'f1': 0.11592356687898088, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.43696829079659705, 'recall': 0.5305164319248826, 'f1': 0.4792196776929601, 'number': 1065} | 0.3192 | 0.3292 | 0.3241 | 0.5668 |
1.1217 | 3.0 | 30 | 0.9584 | {'precision': 0.4690157958687728, 'recall': 0.47713226205191595, 'f1': 0.47303921568627455, 'number': 809} | {'precision': 0.08333333333333333, 'recall': 0.025210084033613446, 'f1': 0.038709677419354833, 'number': 119} | {'precision': 0.6071741032370953, 'recall': 0.6516431924882629, 'f1': 0.6286231884057971, 'number': 1065} | 0.5410 | 0.5434 | 0.5422 | 0.7000 |
0.8403 | 4.0 | 40 | 0.7788 | {'precision': 0.6163265306122448, 'recall': 0.7466007416563659, 'f1': 0.6752375628842929, 'number': 809} | {'precision': 0.2127659574468085, 'recall': 0.08403361344537816, 'f1': 0.12048192771084337, 'number': 119} | {'precision': 0.6675603217158177, 'recall': 0.7014084507042253, 'f1': 0.6840659340659341, 'number': 1065} | 0.6342 | 0.6829 | 0.6576 | 0.7495 |
0.6807 | 5.0 | 50 | 0.7110 | {'precision': 0.6525871172122492, 'recall': 0.7639060568603214, 'f1': 0.7038724373576309, 'number': 809} | {'precision': 0.26865671641791045, 'recall': 0.15126050420168066, 'f1': 0.19354838709677416, 'number': 119} | {'precision': 0.7077059344552702, 'recall': 0.7502347417840376, 'f1': 0.7283500455788514, 'number': 1065} | 0.6696 | 0.7200 | 0.6939 | 0.7799 |
0.5615 | 6.0 | 60 | 0.6839 | {'precision': 0.6663135593220338, 'recall': 0.7775030902348579, 'f1': 0.7176269252709641, 'number': 809} | {'precision': 0.3225806451612903, 'recall': 0.16806722689075632, 'f1': 0.22099447513812157, 'number': 119} | {'precision': 0.7101214574898785, 'recall': 0.8234741784037559, 'f1': 0.7626086956521739, 'number': 1065} | 0.6809 | 0.7657 | 0.7208 | 0.7886 |
0.4954 | 7.0 | 70 | 0.6647 | {'precision': 0.6813304721030042, 'recall': 0.7849196538936959, 'f1': 0.7294658242389431, 'number': 809} | {'precision': 0.28865979381443296, 'recall': 0.23529411764705882, 'f1': 0.2592592592592593, 'number': 119} | {'precision': 0.7263681592039801, 'recall': 0.8225352112676056, 'f1': 0.7714663143989432, 'number': 1065} | 0.6886 | 0.7722 | 0.7280 | 0.7957 |
0.4479 | 8.0 | 80 | 0.6529 | {'precision': 0.6748663101604279, 'recall': 0.7799752781211372, 'f1': 0.7236238532110092, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.740016992353441, 'recall': 0.8178403755868544, 'f1': 0.7769848349687779, 'number': 1065} | 0.6905 | 0.7667 | 0.7266 | 0.8053 |
0.3961 | 9.0 | 90 | 0.6535 | {'precision': 0.6924754634678298, 'recall': 0.7849196538936959, 'f1': 0.7358053302433372, 'number': 809} | {'precision': 0.25217391304347825, 'recall': 0.24369747899159663, 'f1': 0.24786324786324784, 'number': 119} | {'precision': 0.7459505541346974, 'recall': 0.8215962441314554, 'f1': 0.7819481680071492, 'number': 1065} | 0.6980 | 0.7722 | 0.7332 | 0.8020 |
0.3516 | 10.0 | 100 | 0.6645 | {'precision': 0.6899141630901288, 'recall': 0.7948084054388134, 'f1': 0.7386559448592762, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.25210084033613445, 'f1': 0.26785714285714285, 'number': 119} | {'precision': 0.7667814113597247, 'recall': 0.8366197183098592, 'f1': 0.8001796138302649, 'number': 1065} | 0.7112 | 0.7847 | 0.7462 | 0.8046 |
0.3197 | 11.0 | 110 | 0.6868 | {'precision': 0.6927194860813705, 'recall': 0.799752781211372, 'f1': 0.7423981640849111, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7722513089005235, 'recall': 0.8309859154929577, 'f1': 0.8005427408412483, 'number': 1065} | 0.7129 | 0.7863 | 0.7478 | 0.7996 |
0.2986 | 12.0 | 120 | 0.6912 | {'precision': 0.6914778856526429, 'recall': 0.792336217552534, 'f1': 0.7384792626728109, 'number': 809} | {'precision': 0.3162393162393162, 'recall': 0.31092436974789917, 'f1': 0.3135593220338983, 'number': 119} | {'precision': 0.7845057880676759, 'recall': 0.8272300469483568, 'f1': 0.8053016453382084, 'number': 1065} | 0.7194 | 0.7822 | 0.7495 | 0.7971 |
0.2882 | 13.0 | 130 | 0.7016 | {'precision': 0.6961748633879782, 'recall': 0.7873918417799752, 'f1': 0.7389791183294663, 'number': 809} | {'precision': 0.3076923076923077, 'recall': 0.3025210084033613, 'f1': 0.30508474576271183, 'number': 119} | {'precision': 0.7696969696969697, 'recall': 0.8347417840375587, 'f1': 0.8009009009009008, 'number': 1065} | 0.7142 | 0.7837 | 0.7474 | 0.8028 |
0.2789 | 14.0 | 140 | 0.6994 | {'precision': 0.6989247311827957, 'recall': 0.8034610630407911, 'f1': 0.747556066705003, 'number': 809} | {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119} | {'precision': 0.7698343504795118, 'recall': 0.8291079812206573, 'f1': 0.7983725135623869, 'number': 1065} | 0.7140 | 0.7878 | 0.7490 | 0.7990 |
0.274 | 15.0 | 150 | 0.6978 | {'precision': 0.7016216216216217, 'recall': 0.8022249690976514, 'f1': 0.748558246828143, 'number': 809} | {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119} | {'precision': 0.7697022767075307, 'recall': 0.8253521126760563, 'f1': 0.7965564114182148, 'number': 1065} | 0.7149 | 0.7852 | 0.7484 | 0.7991 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3