layoutlm-funsd / README.md
ManelR's picture
End of training
75e07b5
|
raw
history blame
9.33 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6633
  • Answer: {'precision': 0.7068004459308808, 'recall': 0.7836835599505563, 'f1': 0.7432590855803048, 'number': 809}
  • Header: {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119}
  • Question: {'precision': 0.757679180887372, 'recall': 0.8338028169014085, 'f1': 0.7939204291461779, 'number': 1065}
  • Overall Precision: 0.7121
  • Overall Recall: 0.7817
  • Overall F1: 0.7453
  • Overall Accuracy: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8218 1.0 10 1.6340 {'precision': 0.012857142857142857, 'recall': 0.011124845488257108, 'f1': 0.011928429423459244, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22849807445442877, 'recall': 0.1671361502347418, 'f1': 0.19305856832971802, 'number': 1065} 0.1264 0.0938 0.1077 0.3314
1.4842 2.0 20 1.2777 {'precision': 0.18856447688564476, 'recall': 0.1915945611866502, 'f1': 0.19006744328632738, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.44694533762057875, 'recall': 0.5220657276995305, 'f1': 0.48159376353399735, 'number': 1065} 0.3441 0.3567 0.3503 0.5691
1.1045 3.0 30 0.9751 {'precision': 0.44747612551159616, 'recall': 0.4054388133498146, 'f1': 0.42542153047989617, 'number': 809} {'precision': 0.05555555555555555, 'recall': 0.01680672268907563, 'f1': 0.025806451612903226, 'number': 119} {'precision': 0.6208445642407907, 'recall': 0.6488262910798122, 'f1': 0.6345270890725436, 'number': 1065} 0.5425 0.5123 0.5270 0.6860
0.833 4.0 40 0.7763 {'precision': 0.6252609603340292, 'recall': 0.7404202719406675, 'f1': 0.677985285795133, 'number': 809} {'precision': 0.1935483870967742, 'recall': 0.10084033613445378, 'f1': 0.13259668508287292, 'number': 119} {'precision': 0.6614583333333334, 'recall': 0.7154929577464789, 'f1': 0.6874154262516915, 'number': 1065} 0.6321 0.6889 0.6593 0.7559
0.6773 5.0 50 0.7051 {'precision': 0.6295918367346939, 'recall': 0.7626699629171817, 'f1': 0.6897708216880939, 'number': 809} {'precision': 0.29069767441860467, 'recall': 0.21008403361344538, 'f1': 0.24390243902439027, 'number': 119} {'precision': 0.6980802792321117, 'recall': 0.7511737089201878, 'f1': 0.7236544549977386, 'number': 1065} 0.6519 0.7235 0.6859 0.7788
0.5627 6.0 60 0.6598 {'precision': 0.6423432682425488, 'recall': 0.7725587144622992, 'f1': 0.7014590347923682, 'number': 809} {'precision': 0.32098765432098764, 'recall': 0.2184873949579832, 'f1': 0.26, 'number': 119} {'precision': 0.7032878909382518, 'recall': 0.8234741784037559, 'f1': 0.7586505190311419, 'number': 1065} 0.6641 0.7667 0.7117 0.7947
0.4959 7.0 70 0.6625 {'precision': 0.6652267818574514, 'recall': 0.761433868974042, 'f1': 0.7100864553314121, 'number': 809} {'precision': 0.2761904761904762, 'recall': 0.24369747899159663, 'f1': 0.2589285714285714, 'number': 119} {'precision': 0.7452504317789291, 'recall': 0.8103286384976526, 'f1': 0.7764282501124606, 'number': 1065} 0.6889 0.7566 0.7212 0.7945
0.4473 8.0 80 0.6402 {'precision': 0.6684491978609626, 'recall': 0.7725587144622992, 'f1': 0.7167431192660552, 'number': 809} {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119} {'precision': 0.7415540540540541, 'recall': 0.8244131455399061, 'f1': 0.7807914628723877, 'number': 1065} 0.6883 0.7677 0.7258 0.8046
0.3997 9.0 90 0.6381 {'precision': 0.6879120879120879, 'recall': 0.7737948084054388, 'f1': 0.7283304246655031, 'number': 809} {'precision': 0.27350427350427353, 'recall': 0.2689075630252101, 'f1': 0.2711864406779661, 'number': 119} {'precision': 0.7418817651956703, 'recall': 0.8366197183098592, 'f1': 0.7864077669902912, 'number': 1065} 0.6952 0.7772 0.7339 0.8095
0.3597 10.0 100 0.6481 {'precision': 0.6959910913140311, 'recall': 0.7725587144622992, 'f1': 0.7322788517867603, 'number': 809} {'precision': 0.25984251968503935, 'recall': 0.2773109243697479, 'f1': 0.2682926829268293, 'number': 119} {'precision': 0.7495769881556683, 'recall': 0.831924882629108, 'f1': 0.7886070315976857, 'number': 1065} 0.6996 0.7747 0.7352 0.8094
0.3241 11.0 110 0.6649 {'precision': 0.6960893854748603, 'recall': 0.7700865265760197, 'f1': 0.7312206572769954, 'number': 809} {'precision': 0.32075471698113206, 'recall': 0.2857142857142857, 'f1': 0.30222222222222217, 'number': 119} {'precision': 0.7689625108979947, 'recall': 0.828169014084507, 'f1': 0.7974683544303798, 'number': 1065} 0.7165 0.7722 0.7433 0.8115
0.3111 12.0 120 0.6584 {'precision': 0.7083333333333334, 'recall': 0.7985166872682324, 'f1': 0.7507263219058687, 'number': 809} {'precision': 0.29310344827586204, 'recall': 0.2857142857142857, 'f1': 0.2893617021276596, 'number': 119} {'precision': 0.7658833768494343, 'recall': 0.8262910798122066, 'f1': 0.7949412827461607, 'number': 1065} 0.7166 0.7827 0.7482 0.8134
0.2896 13.0 130 0.6736 {'precision': 0.7007963594994312, 'recall': 0.761433868974042, 'f1': 0.7298578199052134, 'number': 809} {'precision': 0.2536231884057971, 'recall': 0.29411764705882354, 'f1': 0.2723735408560311, 'number': 119} {'precision': 0.7527993109388458, 'recall': 0.8206572769953052, 'f1': 0.7852650494159928, 'number': 1065} 0.7002 0.7652 0.7312 0.8091
0.278 14.0 140 0.6619 {'precision': 0.7066666666666667, 'recall': 0.7861557478368356, 'f1': 0.7442949093036864, 'number': 809} {'precision': 0.30973451327433627, 'recall': 0.29411764705882354, 'f1': 0.3017241379310345, 'number': 119} {'precision': 0.7631806395851339, 'recall': 0.8291079812206573, 'f1': 0.7947794779477948, 'number': 1065} 0.7161 0.7797 0.7466 0.8172
0.2785 15.0 150 0.6633 {'precision': 0.7068004459308808, 'recall': 0.7836835599505563, 'f1': 0.7432590855803048, 'number': 809} {'precision': 0.3025210084033613, 'recall': 0.3025210084033613, 'f1': 0.3025210084033613, 'number': 119} {'precision': 0.757679180887372, 'recall': 0.8338028169014085, 'f1': 0.7939204291461779, 'number': 1065} 0.7121 0.7817 0.7453 0.8174

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3