|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: google/paligemma-3b-pt-224 |
|
model-index: |
|
- name: paligemma_VQAMed |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# paligemma_VQAMed2019 |
|
|
|
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the [VQAMed 2019](https://zenodo.org/records/10499039) dataset. |
|
|
|
Fine-tuning code is [here](https://colab.research.google.com/github/mahmoudBidry/Finetune-Google-Paligemma-3B-VQA/blob/main/Fine_tune_PaliGemma_on_VQAMed2019_dataset.ipynb). |
|
|
|
## How to use |
|
|
|
To use the model, follow the [colab notebook](https://colab.research.google.com/drive/1SfrNNHE32k9kBWdR6U0DQr4LI_AVIAb1?usp=sharing). |
|
Below is a quick example. |
|
|
|
To ensure you have the latest version of Transformers, install it using the following command: |
|
|
|
```bash |
|
!pip install -qU git+https://github.com/huggingface/transformers.git |
|
``` |
|
|
|
```python |
|
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
import requests |
|
|
|
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224") |
|
model = PaliGemmaForConditionalGeneration.from_pretrained("MahmoudRox/Paligemma_VQAMED2019") |
|
|
|
prompt = "Which part of the body is in the picture?" #your question |
|
image_file = "https://prod-images-static.radiopaedia.org/images/9289883/1c20962e46c92ee83a3f551adb24fa_big_gallery.jpg" #your image |
|
raw_image = Image.open(requests.get(image_file, stream=True).raw) |
|
|
|
def generate_response(prompt, image): |
|
inputs = processor(images=image, text=prompt, return_tensors="pt") |
|
|
|
# Check if the attention mask needs to be inverted |
|
attention_mask = inputs['attention_mask'] |
|
if torch.max(attention_mask) == 1: |
|
attention_mask = 1 - attention_mask |
|
|
|
# Generate a response |
|
outputs = model.generate( |
|
input_ids=inputs['input_ids'], |
|
attention_mask=attention_mask, |
|
pixel_values=inputs['pixel_values'], |
|
max_new_tokens=1, |
|
no_repeat_ngram_size=2 |
|
) |
|
|
|
# Decode and print the response |
|
decoded_response = processor.decode(outputs[0], skip_special_tokens=True)[len(prompt):] |
|
return decoded_response |
|
|
|
print(generate_response(prompt, raw_image)) |
|
#spine |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2 |
|
- num_epochs: 2 |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.0.dev0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |