|
import argparse |
|
import glob |
|
import json |
|
import logging |
|
import os |
|
import subprocess |
|
import sys |
|
|
|
import numpy as np |
|
from scipy.io.wavfile import read |
|
import torch |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
logging.basicConfig(stream=sys.stdout, level=logging.INFO) |
|
logger = logging |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') |
|
iteration = checkpoint_dict['iteration'] |
|
learning_rate = checkpoint_dict['learning_rate'] |
|
if optimizer is not None: |
|
optimizer.load_state_dict(checkpoint_dict['optimizer']) |
|
saved_state_dict = checkpoint_dict['model'] |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
except Exception as e: |
|
logger.info("%s is not in the checkpoint" % k) |
|
new_state_dict[k] = v |
|
if hasattr(model, 'module'): |
|
model.module.load_state_dict(new_state_dict) |
|
else: |
|
model.load_state_dict(new_state_dict) |
|
logger.info("Loaded checkpoint '{}' (iteration {})".format( |
|
checkpoint_path, iteration)) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, |
|
checkpoint_path): |
|
logger.info( |
|
"Saving model and optimizer state at iteration {} to {}".format( |
|
iteration, checkpoint_path)) |
|
if hasattr(model, 'module'): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save( |
|
{ |
|
'model': state_dict, |
|
'iteration': iteration, |
|
'optimizer': optimizer.state_dict(), |
|
'learning_rate': learning_rate |
|
}, checkpoint_path) |
|
|
|
|
|
def summarize( |
|
writer, |
|
global_step, |
|
scalars={}, |
|
histograms={}, |
|
images={}, |
|
audios={}, |
|
audio_sampling_rate=22050): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats='HWC') |
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sampling_rate) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
print(x) |
|
return x |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, |
|
aspect="auto", |
|
origin="lower", |
|
interpolation='none') |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, )) |
|
plt.close() |
|
return data |
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger('matplotlib') |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
im = ax.imshow(alignment.transpose(), |
|
aspect='auto', |
|
origin='lower', |
|
interpolation='none') |
|
fig.colorbar(im, ax=ax) |
|
xlabel = 'Decoder timestep' |
|
if info is not None: |
|
xlabel += '\n\n' + info |
|
plt.xlabel(xlabel) |
|
plt.ylabel('Encoder timestep') |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3, )) |
|
plt.close() |
|
return data |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding='utf-8') as f: |
|
filepaths_and_text = [line.strip().split(split) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('-c', |
|
'--config', |
|
type=str, |
|
default="./configs/base.json", |
|
help='JSON file for configuration') |
|
parser.add_argument('-m', |
|
'--model', |
|
type=str, |
|
required=True, |
|
help='Model name') |
|
parser.add_argument('--train_data', |
|
type=str, |
|
required=True, |
|
help='train data') |
|
parser.add_argument('--val_data', type=str, required=True, help='val data') |
|
parser.add_argument('--phone_table', |
|
type=str, |
|
required=True, |
|
help='phone table') |
|
parser.add_argument('--speaker_table', |
|
type=str, |
|
default=None, |
|
help='speaker table, required for multiple speakers') |
|
|
|
args = parser.parse_args() |
|
model_dir = args.model |
|
|
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
if init: |
|
with open(config_path, "r", encoding='utf8') as f: |
|
data = f.read() |
|
with open(config_save_path, "w", encoding='utf8') as f: |
|
f.write(data) |
|
else: |
|
with open(config_save_path, "r", encoding='utf8') as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
config['data']['training_files'] = args.train_data |
|
config['data']['validation_files'] = args.val_data |
|
config['data']['phone_table'] = args.phone_table |
|
|
|
config['data']['num_phones'] = len(open(args.phone_table).readlines()) + 1 |
|
if args.speaker_table is not None: |
|
config['data']['speaker_table'] = args.speaker_table |
|
|
|
config['data']['n_speakers'] = len( |
|
open(args.speaker_table).readlines()) + 1 |
|
else: |
|
config['data']['n_speakers'] = 0 |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_dir(model_dir): |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
return hparams |
|
|
|
|
|
def check_git_hash(model_dir): |
|
source_dir = os.path.dirname(os.path.realpath(__file__)) |
|
if not os.path.exists(os.path.join(source_dir, ".git")): |
|
logger.warn('''{} is not a git repository, therefore hash value |
|
comparison will be ignored.'''.format(source_dir)) |
|
return |
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD") |
|
|
|
path = os.path.join(model_dir, "githash") |
|
if os.path.exists(path): |
|
saved_hash = open(path).read() |
|
if saved_hash != cur_hash: |
|
logger.warn( |
|
"git hash values are different. {}(saved) != {}(current)". |
|
format(saved_hash[:8], cur_hash[:8])) |
|
else: |
|
open(path, "w").write(cur_hash) |
|
|
|
|
|
def get_logger(model_dir, filename="train.log"): |
|
global logger |
|
logger = logging.getLogger(os.path.basename(model_dir)) |
|
logger.setLevel(logging.INFO) |
|
|
|
formatter = logging.Formatter( |
|
"%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir) |
|
h = logging.FileHandler(os.path.join(model_dir, filename)) |
|
h.setLevel(logging.INFO) |
|
h.setFormatter(formatter) |
|
logger.addHandler(h) |
|
return logger |
|
|
|
|
|
class HParams(): |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|