|
import os |
|
import random |
|
|
|
import torch |
|
import torchaudio |
|
import torch.utils.data |
|
|
|
import commons |
|
from mel_processing import spectrogram_torch |
|
from utils import load_filepaths_and_text |
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset): |
|
""" |
|
1) loads audio, speaker_id, text pairs |
|
2) normalizes text and converts them to sequences of integers |
|
3) computes spectrograms from audio files. |
|
""" |
|
def __init__(self, audiopaths_sid_text, hparams): |
|
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) |
|
|
|
self.max_wav_value = hparams.max_wav_value |
|
self.sampling_rate = hparams.sampling_rate |
|
self.filter_length = hparams.filter_length |
|
self.hop_length = hparams.hop_length |
|
self.win_length = hparams.win_length |
|
self.sampling_rate = hparams.sampling_rate |
|
self.src_sampling_rate = getattr(hparams, "src_sampling_rate", |
|
self.sampling_rate) |
|
|
|
self.cleaned_text = getattr(hparams, "cleaned_text", False) |
|
|
|
self.add_blank = hparams.add_blank |
|
self.min_text_len = getattr(hparams, "min_text_len", 1) |
|
self.max_text_len = getattr(hparams, "max_text_len", 190) |
|
|
|
phone_file = getattr(hparams, "phone_table", None) |
|
self.phone_dict = None |
|
if phone_file is not None: |
|
self.phone_dict = {} |
|
with open(phone_file) as fin: |
|
for line in fin: |
|
arr = line.strip().split() |
|
self.phone_dict[arr[0]] = int(arr[1]) |
|
|
|
speaker_file = getattr(hparams, "speaker_table", None) |
|
self.speaker_dict = None |
|
if speaker_file is not None: |
|
self.speaker_dict = {} |
|
with open(speaker_file) as fin: |
|
for line in fin: |
|
arr = line.strip().split() |
|
self.speaker_dict[arr[0]] = int(arr[1]) |
|
|
|
random.seed(1234) |
|
random.shuffle(self.audiopaths_sid_text) |
|
self._filter() |
|
|
|
def _filter(self): |
|
""" |
|
Filter text & store spec lengths |
|
""" |
|
|
|
|
|
|
|
|
|
audiopaths_sid_text_new = [] |
|
lengths = [] |
|
for item in self.audiopaths_sid_text: |
|
audiopath = item[0] |
|
|
|
text = item[1] if len(item) == 2 else item[2] |
|
if self.min_text_len <= len(text) and len( |
|
text) <= self.max_text_len: |
|
audiopaths_sid_text_new.append(item) |
|
lengths.append( |
|
int( |
|
os.path.getsize(audiopath) * self.sampling_rate / |
|
self.src_sampling_rate) // (2 * self.hop_length)) |
|
self.audiopaths_sid_text = audiopaths_sid_text_new |
|
self.lengths = lengths |
|
|
|
def get_audio_text_speaker_pair(self, audiopath_sid_text): |
|
audiopath = audiopath_sid_text[0] |
|
if len(audiopath_sid_text) == 2: |
|
sid = 0 |
|
text = audiopath_sid_text[1] |
|
else: |
|
sid = self.speaker_dict[audiopath_sid_text[1]] |
|
text = audiopath_sid_text[2] |
|
text = self.get_text(text) |
|
spec, wav = self.get_audio(audiopath) |
|
sid = self.get_sid(sid) |
|
return (text, spec, wav, sid) |
|
|
|
def get_audio(self, filename): |
|
audio, sampling_rate = torchaudio.load(filename, normalize=False) |
|
if sampling_rate != self.sampling_rate: |
|
audio = audio.to(torch.float) |
|
audio = torchaudio.transforms.Resample(sampling_rate, |
|
self.sampling_rate)(audio) |
|
audio = audio.to(torch.int16) |
|
audio = audio[0] |
|
audio_norm = audio / self.max_wav_value |
|
audio_norm = audio_norm.unsqueeze(0) |
|
spec = spectrogram_torch(audio_norm, |
|
self.filter_length, |
|
self.sampling_rate, |
|
self.hop_length, |
|
self.win_length, |
|
center=False) |
|
spec = torch.squeeze(spec, 0) |
|
return spec, audio_norm |
|
|
|
def get_text(self, text): |
|
text_norm = [self.phone_dict[phone] for phone in text.split()] |
|
if self.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
def get_sid(self, sid): |
|
sid = torch.LongTensor([int(sid)]) |
|
return sid |
|
|
|
def __getitem__(self, index): |
|
return self.get_audio_text_speaker_pair( |
|
self.audiopaths_sid_text[index]) |
|
|
|
def __len__(self): |
|
return len(self.audiopaths_sid_text) |
|
|
|
|
|
class TextAudioSpeakerCollate(): |
|
""" Zero-pads model inputs and targets |
|
""" |
|
def __init__(self, return_ids=False): |
|
self.return_ids = return_ids |
|
|
|
def __call__(self, batch): |
|
"""Collate's training batch from normalized text, audio and speaker identities |
|
PARAMS |
|
------ |
|
batch: [text_normalized, spec_normalized, wav_normalized, sid] |
|
""" |
|
|
|
_, ids_sorted_decreasing = torch.sort(torch.LongTensor( |
|
[x[1].size(1) for x in batch]), |
|
dim=0, |
|
descending=True) |
|
|
|
max_text_len = max([len(x[0]) for x in batch]) |
|
max_spec_len = max([x[1].size(1) for x in batch]) |
|
max_wav_len = max([x[2].size(1) for x in batch]) |
|
|
|
text_lengths = torch.LongTensor(len(batch)) |
|
spec_lengths = torch.LongTensor(len(batch)) |
|
wav_lengths = torch.LongTensor(len(batch)) |
|
sid = torch.LongTensor(len(batch)) |
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len) |
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), |
|
max_spec_len) |
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) |
|
text_padded.zero_() |
|
spec_padded.zero_() |
|
wav_padded.zero_() |
|
for i in range(len(ids_sorted_decreasing)): |
|
row = batch[ids_sorted_decreasing[i]] |
|
|
|
text = row[0] |
|
text_padded[i, :text.size(0)] = text |
|
text_lengths[i] = text.size(0) |
|
|
|
spec = row[1] |
|
spec_padded[i, :, :spec.size(1)] = spec |
|
spec_lengths[i] = spec.size(1) |
|
|
|
wav = row[2] |
|
wav_padded[i, :, :wav.size(1)] = wav |
|
wav_lengths[i] = wav.size(1) |
|
|
|
sid[i] = row[3] |
|
|
|
if self.return_ids: |
|
return (text_padded, text_lengths, spec_padded, spec_lengths, |
|
wav_padded, wav_lengths, sid, ids_sorted_decreasing) |
|
return (text_padded, text_lengths, spec_padded, spec_lengths, |
|
wav_padded, wav_lengths, sid) |
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler |
|
): |
|
""" |
|
Maintain similar input lengths in a batch. |
|
Length groups are specified by boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either |
|
{x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. |
|
|
|
It removes samples which are not included in the boundaries. |
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 |
|
or length(x) > b3 are discarded. |
|
""" |
|
def __init__(self, |
|
dataset, |
|
batch_size, |
|
boundaries, |
|
num_replicas=None, |
|
rank=None, |
|
shuffle=True): |
|
super().__init__(dataset, |
|
num_replicas=num_replicas, |
|
rank=rank, |
|
shuffle=shuffle) |
|
self.lengths = dataset.lengths |
|
self.batch_size = batch_size |
|
self.boundaries = boundaries |
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets() |
|
self.total_size = sum(self.num_samples_per_bucket) |
|
self.num_samples = self.total_size // self.num_replicas |
|
|
|
def _create_buckets(self): |
|
buckets = [[] for _ in range(len(self.boundaries) - 1)] |
|
for i in range(len(self.lengths)): |
|
length = self.lengths[i] |
|
idx_bucket = self._bisect(length) |
|
if idx_bucket != -1: |
|
buckets[idx_bucket].append(i) |
|
|
|
for i in range(len(buckets) - 1, 0, -1): |
|
if len(buckets[i]) == 0: |
|
buckets.pop(i) |
|
self.boundaries.pop(i + 1) |
|
|
|
num_samples_per_bucket = [] |
|
for i in range(len(buckets)): |
|
len_bucket = len(buckets[i]) |
|
total_batch_size = self.num_replicas * self.batch_size |
|
rem = (total_batch_size - |
|
(len_bucket % total_batch_size)) % total_batch_size |
|
num_samples_per_bucket.append(len_bucket + rem) |
|
return buckets, num_samples_per_bucket |
|
|
|
def __iter__(self): |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
|
|
indices = [] |
|
if self.shuffle: |
|
for bucket in self.buckets: |
|
indices.append( |
|
torch.randperm(len(bucket), generator=g).tolist()) |
|
else: |
|
for bucket in self.buckets: |
|
indices.append(list(range(len(bucket)))) |
|
|
|
batches = [] |
|
for i in range(len(self.buckets)): |
|
bucket = self.buckets[i] |
|
len_bucket = len(bucket) |
|
ids_bucket = indices[i] |
|
num_samples_bucket = self.num_samples_per_bucket[i] |
|
|
|
|
|
rem = num_samples_bucket - len_bucket |
|
ids_bucket = ids_bucket + ids_bucket * ( |
|
rem // len_bucket) + ids_bucket[:(rem % len_bucket)] |
|
|
|
|
|
ids_bucket = ids_bucket[self.rank::self.num_replicas] |
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size): |
|
batch = [ |
|
bucket[idx] |
|
for idx in ids_bucket[j * self.batch_size:(j + 1) * |
|
self.batch_size] |
|
] |
|
batches.append(batch) |
|
|
|
if self.shuffle: |
|
batch_ids = torch.randperm(len(batches), generator=g).tolist() |
|
batches = [batches[i] for i in batch_ids] |
|
self.batches = batches |
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples |
|
return iter(self.batches) |
|
|
|
def _bisect(self, x, lo=0, hi=None): |
|
if hi is None: |
|
hi = len(self.boundaries) - 1 |
|
|
|
if hi > lo: |
|
mid = (hi + lo) // 2 |
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: |
|
return mid |
|
elif x <= self.boundaries[mid]: |
|
return self._bisect(x, lo, mid) |
|
else: |
|
return self._bisect(x, mid + 1, hi) |
|
else: |
|
return -1 |
|
|
|
def __len__(self): |
|
return self.num_samples // self.batch_size |
|
|