import streamlit as st | |
import tensorflow as tf | |
# Load your model | |
model = tf.keras.models.load_model('best_dnn_model.h5') | |
# Define a function to make predictions | |
def predict(input_data): | |
prediction = model.predict(input_data) | |
return prediction | |
# Streamlit app | |
st.title('Bank Churn Prediction') | |
user_input = st.text_input('Enter your input data') | |
if st.button('Predict'): | |
input_data = preprocess_user_input(user_input) # Implementing the function based on preprocessing logic | |
prediction = predict(input_data) | |
st.write('Prediction:', prediction) | |