librarian-bot's picture
Librarian Bot: Add base_model information to model
e8851e5
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - multi_news
metrics:
  - rouge
pipeline_tag: summarization
base_model: slauw87/bart_summarisation
model-index:
  - name: finetuned_multi_news_bart_text_summarisation
    results:
      - task:
          type: textsummarization
          name: Sequence-to-sequence Language Modeling
        dataset:
          name: multi_news
          type: multi_news
          config: default
          split: test
          args: default
        metrics:
          - type: rouge
            value: 0.4038
            name: Rouge1

finetuned_multi_news_bart_text_summarisation

This model is a fine-tuned version of slauw87/bart_summarisation on the multi_news dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8952
  • Rouge1: 0.4038
  • Rouge2: 0.1389
  • Rougel: 0.2155
  • Rougelsum: 0.2147
  • Gen Len: 138.7667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 15 2.9651 0.3903 0.134 0.21 0.2098 137.6
No log 2.0 30 2.8952 0.4038 0.1389 0.2155 0.2147 138.7667

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3