Update readme
Browse files
README.md
CHANGED
@@ -10,6 +10,12 @@ library_name: bertopic
|
|
10 |
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
11 |
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
## Usage
|
14 |
|
15 |
To use this model, please install BERTopic:
|
@@ -27,6 +33,12 @@ topic_model = BERTopic.load("MaartenGr/BERTopic_Multimodal")
|
|
27 |
topic_model.get_topic_info()
|
28 |
```
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
## Topic overview
|
31 |
|
32 |
* Number of topics: 29
|
@@ -69,6 +81,60 @@ topic_model.get_topic_info()
|
|
69 |
|
70 |
</details>
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
## Training hyperparameters
|
73 |
|
74 |
* calculate_probabilities: False
|
|
|
10 |
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
|
11 |
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
|
12 |
|
13 |
+
This model was trained on 8000 images from Flickr **without** the captions. This demonstrates how BERTopic can be used for topic modeling using images as input only.
|
14 |
+
|
15 |
+
A few examples of generated topics:
|
16 |
+
|
17 |
+
!["multimodal.png"](multimodal.png)
|
18 |
+
|
19 |
## Usage
|
20 |
|
21 |
To use this model, please install BERTopic:
|
|
|
33 |
topic_model.get_topic_info()
|
34 |
```
|
35 |
|
36 |
+
You can view all information about a topic as follows:
|
37 |
+
|
38 |
+
```python
|
39 |
+
topic_model.get_topic(topic_id, full=True)
|
40 |
+
```
|
41 |
+
|
42 |
## Topic overview
|
43 |
|
44 |
* Number of topics: 29
|
|
|
81 |
|
82 |
</details>
|
83 |
|
84 |
+
## Training Procedure
|
85 |
+
|
86 |
+
The data was retrieved as follows:
|
87 |
+
|
88 |
+
```python
|
89 |
+
import os
|
90 |
+
import glob
|
91 |
+
import zipfile
|
92 |
+
import numpy as np
|
93 |
+
import pandas as pd
|
94 |
+
from tqdm import tqdm
|
95 |
+
from sentence_transformers import util
|
96 |
+
|
97 |
+
# Flickr 8k images
|
98 |
+
img_folder = 'photos/'
|
99 |
+
caps_folder = 'captions/'
|
100 |
+
if not os.path.exists(img_folder) or len(os.listdir(img_folder)) == 0:
|
101 |
+
os.makedirs(img_folder, exist_ok=True)
|
102 |
+
|
103 |
+
if not os.path.exists('Flickr8k_Dataset.zip'): #Download dataset if does not exist
|
104 |
+
util.http_get('https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_Dataset.zip', 'Flickr8k_Dataset.zip')
|
105 |
+
util.http_get('https://github.com/jbrownlee/Datasets/releases/download/Flickr8k/Flickr8k_text.zip', 'Flickr8k_text.zip')
|
106 |
+
|
107 |
+
for folder, file in [(img_folder, 'Flickr8k_Dataset.zip'), (caps_folder, 'Flickr8k_text.zip')]:
|
108 |
+
with zipfile.ZipFile(file, 'r') as zf:
|
109 |
+
for member in tqdm(zf.infolist(), desc='Extracting'):
|
110 |
+
zf.extract(member, folder)
|
111 |
+
images = list(glob.glob('photos/Flicker8k_Dataset/*.jpg'))
|
112 |
+
```
|
113 |
+
|
114 |
+
Then, to perform topic modeling on multimodal data with BERTopic:
|
115 |
+
|
116 |
+
```python
|
117 |
+
from bertopic import BERTopic
|
118 |
+
from bertopic.backend import MultiModalBackend
|
119 |
+
from bertopic.representation import VisualRepresentation, KeyBERTInspired
|
120 |
+
|
121 |
+
# Image embedding model
|
122 |
+
embedding_model = MultiModalBackend('clip-ViT-B-32', batch_size=32)
|
123 |
+
|
124 |
+
# Image to text representation model
|
125 |
+
representation_model = {
|
126 |
+
"Visual_Aspect": VisualRepresentation(image_to_text_model="nlpconnect/vit-gpt2-image-captioning", image_squares=True),
|
127 |
+
"KeyBERT": KeyBERTInspired()
|
128 |
+
}
|
129 |
+
|
130 |
+
# Train our model with images only
|
131 |
+
topic_model = BERTopic(representation_model=representation_model, verbose=True, embedding_model=embedding_model, min_topic_size=30)
|
132 |
+
topics, probs = topic_model.fit_transform(documents=None, images=images)
|
133 |
+
```
|
134 |
+
|
135 |
+
The above demonstrates that the input were only images. These images are clustered and from those clusters a small subset of representative images are extracted. The representative images are captioned using `"nlpconnect/vit-gpt2-image-captioning"` to generate a small textual dataset over which we can run c-TF-IDF and the additional
|
136 |
+
`KeyBERTInspired` representation model.
|
137 |
+
|
138 |
## Training hyperparameters
|
139 |
|
140 |
* calculate_probabilities: False
|