bgc-accession / test_predictions.txt
root
First version of the bgc-accession model and tokenizer.
3f66fdf
From O
the O
amino O
acid O
sequence O
similarity O
of O
Orf8 O
to O
UvrA O
and O
DrrC O
, O
it O
is O
suggested O
a O
role O
as O
a O
transporter O
or O
the O
excision O
nucleotide O
repair O
system O
in O
the O
resistance O
[ O
133 O
] O
( O
GB O
No. O
EU195114 B-bgc-accession
) O
. O
The O
manC O
gene O
in O
M4 O
is O
immediately O
above O
the O
wbyO O
GT O
gene O
that O
adds O
the O
first O
Man O
residue O
in O
M4 O
, O
while O
the O
manC O
gene O
in O
M2–M3 O
is O
between O
the O
GT1 O
and O
GT2 O
genes O
, O
as O
are O
the O
fcl O
and O
gmd O
genes O
needed O
for O
GDP-l-Fuc O
and O
GDP-l-Qui O
. O
The O
pen O
genes O
were O
flanked O
by O
genes O
predicted O
to O
encode O
a O
cytochrome O
P450 O
monooxygenase O
similar O
to O
a O
gene O
for O
gibberellin O
biosynthesis O
in O
F. O
fujikuroi O
( O
PC-05 O
) O
[ O
27 O
] O
and O
a O
Nmr-A O
family O
transcriptional O
regulator O
( O
PC-06 O
) O
at O
one O
flank O
and O
two O
cytochrome O
P450s O
( O
PC-20 O
and O
PC-21 O
) O
and O
an O
aromatic O
prenyl O
transferase O
( O
PC-22 O
) O
at O
the O
other O
. O
The O
biosynthetic O
gene O
cluster O
contains O
genes O
for O
an O
acetyltransferase O
and O
two O
ABC O
transporters O
, O
which O
may O
play O
a O
role O
in O
self-resistance O
[ O
397,398,399 O
] O
( O
GB O
Nos. O
AB684620 B-bgc-accession
and O
AB684619 B-bgc-accession
) O
. O
The O
Biosynthetic O
Gene O
Cluster O
for O
Andrastin O
A O
in O
Penicillium O
roqueforti O
Penicillium O
roqueforti O
is O
a O
filamentous O
fungus O
involved O
in O
the O
ripening O
of O
several O
kinds O
of O
blue O
cheeses O
. O
We O
recently O
identified O
phthoxazolin O
A O
as O
a O
cryptic O
metabolite O
of O
Streptomyces O
avermitilis O
that O
produces O
the O
important O
anthelmintic O
agent O
avermectin O
. O
Domain O
organization O
derived O
from O
the O
pam O
secondary O
metabolite O
gene O
cluster O
in O
the O
genome O
of O
Paenibacillus O
larvae O
DSM25430 O
. O
This O
mutant O
was O
then O
complemented O
by O
reintroduction O
of O
wild-type O
swnK O
, O
restoring O
swainsonine O
production O
in O
several O
independent O
transformants O
( O
Table O
1 O
) O
. O
Among O
these O
up-regulated O
gene O
clusters O
, O
pks6 O
( O
SACE_4567 O
- O
4577 O
) O
showed O
the O
most O
significantly O
induced O
expression O
( O
Mean O
: O
about O
5.7 O
folds O
; O
Max O
: O
about O
21 O
folds O
) O
. O
griseus]68 O
% O
srcmH O
ABC O
transporter O
membrane O
protein251SfrB O
The O
reciprocal O
best O
BLAST O
hit O
in O
GenBank O
for O
the O
XaPPTase O
gene O
of O
X. O
albilineans O
is O
the O
XaPPTase O
gene O
from O
X. O
oryzae O
. O
The O
cluster O
contains O
genes O
for O
transporters O
( O
DynU6 O
, O
DynT8 O
, O
and O
DynT10 O
) O
, O
dioxygenase O
( O
DynE11 O
) O
which O
is O
similar O
to O
bleomycin-resistance O
protein O
, O
and O
a O
self-sacrifice O
protein O
( O
DynU16 O
) O
. O
Sequences O
for O
the O
network O
were O
accessed O
by O
a O
5000 O
sequence O
return O
, O
two-iteration O
Position-Specific O
Iterated O
BLAST O
( O
PSI-BLAST O
) O
of O
the O
lanthipeptide O
synthetase O
CylM O
( O
accession O
number O
AAK67266.1 B-bgc-accession
) O
. O
B O
Comparison O
of O
precursor O
peptides O
of O
plantazolicin O
( O
PlnA O
) O
, O
streptolysin O
S O
( O
SagA O
) O
, O
clostridiolysin O
S O
( O
ClosA O
) O
with O
putative O
precursor O
peptides O
of O
B. O
intermedia O
, O
B. O
hyodysenteriae O
, O
and O
T. O
mathranii O
mathranii O
A3 O
; O
Cleavage O
site O
of O
leader O
and O
core O
peptide O
in O
bold O
. O
Results O
A O
potential O
pelgipeptin O
synthetase O
gene O
cluster O
( O
plp O
) O
was O
identified O
from O
Paenibacillus O
elgii O
B69 O
through O
genome O
analysis O
. O
Based O
on O
this O
proposed O
pathway O
, O
kanN O
disruption O
will O
result O
in O
kanamycin O
B O
accumulation O
, O
whereas O
based O
on O
the O
linear O
pathway O
, O
2'-N-acetylparomamine O
, O
the O
substrate O
of O
KanN O
, O
should O
accumulate O
. O
According O
to O
the O
recent O
acarbose O
biosynthesis O
model O
, O
this O
intermediate O
undergoes O
second O
phosphorylation O
by O
either O
the O
1-epi-valienol-7P-kinase O
AcbU O
and/or O
the O
hydrolase O
AcbJ O
before O
being O
further O
nucleotidylated O
( O
unproven O
hypothesis O
, O
Wehmeier O
and O
Piepersberg O
[ O
6 O
] O
) O
. O
sssA/sssA′/sssA1 O
: O
suicin O
precursor O
; O
sssE O
, O
sssF O
, O
and O
sssG O
: O
immunity O
proteins O
; O
sssK O
: O
sensor O
histidine O
kinase O
; O
sssM O
: O
synthetase O
involved O
in O
lantibiotic O
modification O
; O
sssR O
: O
response O
regulator O
; O
sssT O
: O
ABC O
transporter O
. O
Also O
, O
several O
loline-alkaloid O
producers O
had O
missing O
or O
inactive O
decoration O
genes O
( O
lolN O
, O
lolM O
, O
and O
lolP O
) O
. O
Mycotoxin O
genes O
are O
expressed O
as O
a O
biosynthetic O
gene O
cluster O
( O
BGC O
) O
. O
salmonicida O
A449 O
70 O
YP_001141301 B-bgc-accession
ORF4 O
5237.6016 O
glycosyltransferase O
, O
group O
2 O
family O
protein O
wbxS O
Escherichia O
coli O
48 O
ACH97156 B-bgc-accession
ORF5 O
6013.7269 O
integral O
membrane O
protein O
AefA/O-antigen O
flippase O
wzx O
Salmonella O
bongori O
NCTC O
12419 O
70 O
YP_004730750 B-bgc-accession
ORF6 O
7300.9282 O
epimerase/dehydratase O
family O
WbfY-like O
protein O
wbgZ O
Aeromonas O
hydrophila O
subsp O
. O
mpz7 O
and O
mpz8 O
show O
similarity O
( O
74 O
% O
and O
60 O
% O
, O
respectively O
) O
to O
monooxygenases O
. O
The O
lividomycin O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
Streptomyces O
lividus O
as O
a O
40 O
kb O
DNA O
fragment O
( O
GB O
No. O
AJ748832 B-bgc-accession
) O
. O
Geninthiocin O
B O
gene O
cluster O
is O
flanked O
at O
both O
ends O
by O
the O
genes O
encoding O
ribosomal O
and O
translation-associated O
proteins O
( O
Figure O
4 O
, O
Table O
2 O
) O
, O
which O
are O
presumably O
not O
involved O
in O
geninthiocin O
B O
and O
compound O
2 O
biosynthesises O
, O
but O
may O
play O
a O
key O
role O
in O
self-resistance O
of O
Streptomyces O
sp. O
YIM O
130001 O
. O
We O
completed O
genome O
sequencing O
and O
gene O
function O
annotation O
for O
A. O
ustus O
094102 O
in O
April O
, O
2012 O
. O
Comparison O
of O
Strategies O
to O
Overcome O
Drug O
Resistance O
: O
Learning O
from O
Various O
Kingdoms O
Drug O
resistance O
, O
especially O
antibiotic O
resistance O
, O
is O
a O
growing O
threat O
to O
human O
health O
. O
griseus]74 O
% O
srcmGIV O
glycosyltransferase391PyrC4 O
[ O
Streptomyces O
rugosporus]41 O
% O
srcmGII O
glycosyltransferase391SsfS6 O
[ O
Streptomyces O
sp. O
SF2575]38 O
% O
srcmF O
dTDP-4-keto-6-deoxy-D-glucose O
epimerase199dTDP-4-keto-6-deoxy-D-glucose O
epimerase O
[ O
Streptomyces O
tsukubensis]78 O
% O
srcmOII O
oxygenase550DacO2 O
Similarity O
of O
the O
cladoniamide O
and O
BE-54017 O
gene O
clusters O
My O
annotation O
of O
individual O
genes O
in O
the O
cladoniamide O
( O
cla O
) O
cluster O
matches O
well O
with O
the O
independently O
reported O
BE-54017 O
( O
abe O
) O
cluster O
[ O
13 O
] O
. O
Atrolysin O
A O
is O
a O
zinc O
metalloproteinase O
that O
is O
isolated O
from O
the O
venom O
of O
the O
western O
diamondback O
rattlesnake O
, O
Crotalus O
atrox O
. O
As O
the O
genes O
MpFasA2 O
, O
MpFasB2 O
, O
MpPKS5 O
, O
mppD O
, O
and O
mppB O
are O
structural O
genes O
for O
pigment O
biosynthesis O
and O
mppR1 O
is O
a O
regulatory O
gene O
( O
Balakrishnan O
et O
al. O
2013 O
) O
, O
the O
polyketide O
chromophores O
and O
media O
fatty O
acid O
were O
still O
being O
generated O
during O
fermentation O
anaphase O
under O
high O
glucose O
stress O
. O
Remarkably O
, O
the O
genetic O
backbones O
of O
the O
xantholysin O
and O
entolysin O
NRPS O
systems O
also O
bear O
pronounced O
phylogenetic O
similarity O
to O
those O
of O
the O
P. O
putida O
strains O
PCL1445 O
and O
RW10S2 O
, O
albeit O
generating O
the O
seemingly O
structurally O
unrelated O
cyclic O
lipopeptides O
putisolvin O
( O
undecapeptide O
containing O
a O
cyclotetrapeptide O
) O
and O
WLIP O
( O
nonapeptide O
containing O
a O
cycloheptapeptide O
) O
, O
respectively O
. O
Edwards O
et O
al. O
cloned O
the O
jamaicamide-producing O
gene O
cluster O
as O
a O
58 O
kb O
DNA O
fragment O
composed O
of O
17 O
open O
reading O
frames O
[ O
50 O
] O
( O
GB O
No. O
AY522504 B-bgc-accession
) O
. O
The O
single O
polysaccharide O
repeat O
bound O
to O
Und-PP O
is O
flipped O
to O
the O
periplasmic O
side O
which O
is O
catalyzed O
by O
O-antigen O
flippase O
[ O
43 O
] O
and O
polymerized O
by O
the O
Wzy-dependent O
pathway O
[ O
44 O
] O
. O
The O
biosynthetic O
gene O
cluster O
of O
nocardicin O
A O
was O
cloned O
[ O
470 O
] O
( O
GB O
No. O
AY541063 B-bgc-accession
) O
. O
In O
contrast O
, O
the O
ascE-deleted O
strain O
( O
ΔascE O
) O
only O
accumulated O
6 O
( O
2.32 O
g/L O
, O
SI O
Appendix O
, O
Table O
S8 O
) O
, O
but O
neither O
1 O
nor O
2 O
( O
Fig. O
3C O
) O
. O
This O
regulatory O
system O
is O
composed O
of O
two O
essential O
genes O
, O
gacA O
and O
gacS O
, O
encoding O
a O
sensor O
kinase O
and O
response O
regulator O
, O
respectively O
, O
which O
control O
the O
production O
of O
multiple O
secondary O
metabolites O
and O
are O
directly O
related O
to O
pathogenesis O
[ O
63 O
] O
. O
Four O
other O
genes O
, O
which O
we O
tentatively O
designated O
idtB-like O
, O
idtF-like O
, O
idtK-like O
and O
idtQ-like O
, O
were O
embedded O
in O
AT-rich O
repetitive O
sequences O
, O
and O
none O
assembled O
on O
the O
same O
contigs O
as O
the O
five O
IDT O
gene O
orthologs O
. O
Numerous O
rounds O
of O
gene-walking O
outwards O
from O
these O
known O
regions O
revealed O
a O
SXT O
gene O
cluster O
in O
L. O
wollei O
spanning O
approximately O
36 O
kb O
( O
Figure O
2 O
) O
and O
encoding O
thirty-one O
genes O
predicted O
to O
be O
involved O
in O
the O
biosynthesis O
and O
export O
of O
the O
these O
neurotoxins O
( O
Table O
1 O
) O
. O
Further O
investigation O
of O
this O
metabolite O
using O
LC-ESI-HRMS O
identified O
its O
m/z O
as O
239.1102 O
, O
corresponding O
to O
the O
[ O
M O
+ O
H]+ O
of O
thiotetromycin O
( O
2 O
) O
( O
Fig. O
4B O
) O
. O
Both O
these O
genes O
are O
conserved O
in O
cluster O
34 O
( O
Fig. O
2c O
) O
, O
suggesting O
that O
this O
pigment O
may O
be O
part O
of O
the O
secondary O
metabolite O
content O
of O
Z. O
tritici O
, O
which O
may O
account O
for O
the O
light O
red/pink O
color O
of O
Z. O
tritici O
conidia O
when O
grown O
on O
rich O
agar O
. O
No O
ICZs O
production O
was O
observed O
in O
LIW603 O
, O
indicating O
that O
spcR O
is O
a O
positive O
regulator O
( O
Figure O
3a O
, O
panel O
iv O
) O
. O
Therefore O
, O
we O
speculated O
that O
1 O
was O
derived O
from O
the O
ribosomally O
synthesized O
and O
post-translationally O
modified O
peptide O
( O
RiPP O
) O
biosynthetic O
machinery20 O
, O
21 O
, O
which O
may O
catalyse O
the O
formation O
of O
a O
single O
thiazoline O
ring O
from O
cysteine O
, O
two O
methyloxazole O
rings O
from O
threonines O
, O
and O
five O
oxazole O
rings O
from O
serines O
, O
via O
dehydration O
and O
oxidation O
. O
Biological O
Activity O
Lactomycin O
A O
, O
B O
, O
and O
C O
inhibit O
cathepsin O
B O
with O
IC50 O
values O
of O
4.5 O
μM O
, O
0.8 O
μM O
, O
and O
1.6 O
μM O
, O
respectively O
. O
Nocardicin O
A O
is O
a O
monocyclic O
β-lactam O
antibiotic O
monobactam O
, O
and O
was O
isolated O
from O
Nocardia O
uniformis O
[ O
469 O
] O
and O
other O
actinomycetes O
. O
Results O
We O
report O
here O
the O
complete O
sequence O
of O
a O
12.2 O
kb O
virulence O
locus O
of O
Xanthomonas O
oryzae O
pv O
. O
Firstly O
, O
the O
fatty O
acid O
( O
FA O
) O
of O
the O
C10 O
unit O
, O
which O
is O
used O
as O
the O
precursor O
material O
, O
is O
synthesized O
by O
PKS O
SwrEFG O
and O
other O
undetermined O
proteins O
and O
is O
released O
as O
a O
fatty O
acyl-CoA. O
Secondly O
, O
a O
17.7 O
O O
kb O
swrA O
encodes O
the O
core O
W2-peptide O
chain O
( O
the O
structure O
of O
the O
CLP O
with O
a O
5-amino O
acid O
peptide O
moiety O
) O
, O
which O
contains O
a O
total O
of O
five O
modules O
G-52 O
is O
6-methylsisomicin O
and O
G-418 O
( O
geneticin O
) O
is O
structurally O
similar O
to O
gentamicin O
. O
Antibiotic O
susceptibility O
of O
S. O
infantarius O
LP90a O
. O
Gene O
Target O
Primer O
Name O
Primer O
Sequence O
5′ O
to O
3′ O
Amplicon O
Length/bp O
Target O
Species O
Reference O
TRI3 O
3_CONS O
1 O
TGGCAAAGACTGGTTCAC O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI3 O
3_NIV_F O
GTGCACAGAATATACGAGC O
840 O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI3 O
3_15ADON_F O
ACTGACCCAAGCTGCCATC O
610 O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI3 O
3_3ADON_F O
CGCATTGGCTAACACATG O
243 O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI12 O
12_CONS O
CATGAGCATGGTGATGTC O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI12 O
12_NIV_F O
TCTCCTCGTTGTATCTGG O
840 O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI12 O
12_15ADON_F O
TACAGCGGTCGCAACTTC O
670 O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI12 O
12_3ADON_F O
CTTTGGCAAGCCCGTGCA O
410 O
F. O
graminearum O
, O
F. O
asiaticum O
[ O
79 O
] O
TRI3 O
Tri3F971 O
CATCATACTCGCTCTGCTG O
708for O
15-ADON O
producers O
only O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
80 O
] O
Tri3F1325 O
GCATTGGCTAACACATGA O
354for O
3-ADON O
producers O
only O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
80 O
] O
Tri3R1679 O
TT(A/G)TAGTTTGCA O
TCATT(A/G)TAG O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
80 O
] O
Gene O
F O
3891 O
GCTGTCAYAGYCAGAAGYTACGATG O
1200 O
Fusarium O
incarnatum O
equiseti O
species O
complex O
[ O
62 O
] O
3894 O
AGAYATGBAGGACARGGCTTAGGGT O
Fusarium O
incarnatum O
equiseti O
species O
complex O
[ O
62 O
] O
TRI1 O
1285 O
GCGTCTCAGCTTCATCAAGGCAKCKAMTGAWTCG O
1200 O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1292 O
CTTGACTTSMTTGGCKGCAAAGAARCGACCA O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
TRI3 O
1912 O
TGTGTMGGYGCWGAGGCVATYGTTGG O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1914 O
ACRGCAGCRGTCTGRCACATGGCGTA O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
TRI4 O
2576 O
CCAATCAGYCAYGCTRTTGGGATACTG O
1800 O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
2578 O
ACCCGGATTTCRCCAACATGCT O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
TRI5 O
1558 O
GGCATGGTCGTGTACTCTTGGGTCAAGGT O
1300 O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1559 O
GCCTGMYCAWAGAAYTTGCRGAACTT O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
TRI8 O
3904 O
GACCAGNAYCACSGYCAACAGTTCAG O
1200 O
Fusarium O
incarnatum O
equiseti O
species O
complex O
[ O
62 O
] O
3906 O
GAACAGCCRCTCCRWAACTATTGTC O
Fusarium O
incarnatum O
equiseti O
species O
complex O
[ O
62 O
] O
TRI11 O
3895 O
TWCCCCACAAGRAACAYCTYGARCT O
1300 O
Fusarium O
incarnatum O
equiseti O
species O
complex O
[ O
62 O
] O
3897 O
TCCCASACTGTYCTSGCMAGCATCAT O
Fusarium O
incarnatum O
equiseti O
species O
complex O
[ O
62 O
] O
TRI16 O
1472b O
CCTCTCTCCCCTTGAYCAATTRAACTCT O
NA O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1473b O
CTTCCCGATCCCRAYGAGCCTCTTACAC O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1474b O
GCCTTATMTKGGTAATGTCGTGCTKACA O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1475b O
AAGAGGCTCRTYGGGATCGGGAAGGTTC O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1476b O
CARCCGACGATGTMAGCACGACATTACC O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
1477b O
CAATATACGGATACCGCACAAAGACTGG O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
TRI101 O
2 O
109 O
CCATGGGTCGCRGGCCARGTSAA O
NA O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
178 O
AACTCSCCRTCIGGYTTYTTNGGCAT O
F. O
graminearum O
, O
F. O
sporotrichioides O
[ O
30 O
] O
TRI5 O
HATri/F O
CAGATGGAGAACTGGATGGT O
260 O
F. O
culmorum O
, O
F. O
poae O
, O
F. O
sporotrichioides O
, O
F. O
graminearum O
, O
F. O
sambucinum O
[ O
81 O
] O
HATri/R O
GCACAAGTGCCACGTGAC O
F. O
culmorum O
, O
F. O
poae O
, O
F. O
sporotrichioides O
, O
F. O
graminearum O
, O
F. O
sambucinum O
[ O
81 O
] O
TRI11 O
N11 O
CTTGTCAGGCGGCACAGTAG O
643 O
for O
NIV-producers O
F. O
asiaticum O
, O
F. O
mesoamericanum O
, O
F. O
cortaderiae O
, O
F. O
gerlachii O
, O
F. O
meridionale O
× O
F. O
asiaticum O
, O
F. O
meridionale O
, O
F. O
lunulosporum O
, O
F. O
cerealis O
, O
F. O
vorosii O
, O
F. O
aethiopicum O
, O
F. O
graminearum O
, O
F. O
boothii O
, O
F. O
asiaticum O
, O
F. O
brasilicum O
, O
F. O
austroamericanum O
, O
F. O
culmorum O
, O
F. O
pseudograminearum O
[ O
74 O
] O
15D11 O
AAGTATGGTCCAGTTGTCCGTATT O
424 O
for O
3-ADON O
producers O
F. O
asiaticum O
, O
F. O
mesoamericanum O
, O
F. O
cortaderiae O
, O
F. O
gerlachii O
, O
F. O
meridionale O
× O
F. O
asiaticu O
) O
, O
F. O
meridionale O
, O
F. O
lunulosporum O
, O
F. O
cerealis O
, O
F. O
vorosii O
, O
F. O
aethiopicum O
, O
F. O
graminearum O
, O
F. O
boothii O
, O
F. O
asiaticum O
, O
F. O
brasilicum O
, O
F. O
austroamericanum O
, O
F. O
culmorum O
, O
F. O
pseudograminearum O
[ O
74 O
] O
3D11 O
GCAA O
GTCTGGCGAGGCC O
342 O
for O
15-ADON O
producers O
F. O
asiaticum O
, O
F. O
mesoamericanum O
, O
F. O
cortaderiae O
, O
F. O
gerlachii O
, O
F. O
meridionale O
× O
F. O
asiaticu O
) O
, O
F. O
meridionale O
, O
F. O
lunulosporum O
, O
F. O
cerealis O
, O
F. O
vorosii O
, O
F. O
aethiopicum O
, O
F. O
graminearum O
, O
F. O
boothii O
, O
F. O
asiaticum O
, O
F. O
brasilicum O
, O
F. O
austroamericanum O
, O
F. O
culmorum O
, O
F. O
pseudograminearum O
[ O
74 O
] O
11R O
TCAAAGGCCAGAGCA O
ACCC O
F. O
asiaticum O
, O
F. O
mesoamericanum O
, O
F. O
cortaderiae O
, O
F. O
gerlachii O
, O
F. O
meridionale O
× O
F. O
asiaticu O
) O
, O
F. O
meridionale O
, O
F. O
lunulosporum O
, O
F. O
cerealis O
, O
F. O
vorosii O
, O
F. O
aethiopicum O
, O
F. O
graminearum O
, O
F. O
boothii O
, O
F. O
asiaticum O
, O
F. O
brasilicum O
, O
F. O
austroamericanum O
, O
F. O
culmorum O
, O
F. O
pseudograminearum O
[ O
74 O
] O
TRI11 O
Tri11-CON O
GACTGCTCATGGAGACGCTG O
NA O
F. O
graminearum O
[ O
82 O
] O
Tri11 O
- O
3AcDON O
TCCTCATGCTCG O
GTGGACTCG O
334 O
F. O
graminearum O
[ O
82 O
] O
Tri11 O
- O
15AcDON O
TGGTCCAGT O
TGTCCGTATT O
279 O
F. O
graminearum O
[ O
82 O
] O
Tri11-NIV O
GTAGGTTCCATTGC O
TTGTTC O
497 O
F. O
graminearum O
[ O
82 O
] O
TRI7 O
GzTri7/f1 O
GGCTTTACGACTCCTCAACAATGG O
∼160 O
F. O
graminearum O
[ O
66 O
] O
GzTri7/r1 O
AGAGCCCTGCGAAAG(C/T)ACTGGTGC O
F. O
graminearum O
[ O
66 O
] O
TRI7 O
Tri7F340 O
ATCGTGTACAAGGTTTACG O
625 O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
80 O
] O
Tri7R965 O
TTCAAGTAACGTTCGACAAT O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
80 O
] O
TRI13 O
Tri13F O
CATCATGAGACTTGTKCRGTTTGGG O
1075 O
for O
NIV O
producers;799 O
for O
DON-producers O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
83 O
] O
Tri13DONR O
GCTAGATCGATTGTTGCATTGAG O
282 O
for O
DON O
producers O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
83 O
] O
Tri13R O
TTGAAAGCTCCAATGTCGTG O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
83 O
] O
Tri13NIVF O
CCAAATCCGAAAACCGCAG O
312 O
for O
NIV O
producers O
F. O
graminearum O
, O
F. O
culmorum O
, O
F. O
cerealis O
[ O
83 O
] O
The O
deduced O
protein O
sequence O
( O
Table O
2 O
) O
from O
cesH O
( O
31 O
kDa O
) O
showed O
significant O
( O
58 O
% O
) O
identity O
to O
putative O
hydrolases/acyltransferases O
( O
COG0596 O
) O
from O
B. O
cereus O
group O
members O
. O
carotovorum O
PC1 O
52 O
YP_003016893 B-bgc-accession
ORF16 O
17986.19167 O
glycosyl O
transferase O
group O
1 O
wbxI O
Methylobacter O
tundripaludum O
SV96 O
52 O
ZP_08780763 B-bgc-accession
ORF17 O
19164.19655 O
acetyltransferase O
wcaF O
Methylobacter O
tundripaludum O
SV96 O
59 O
ZP_08780764 B-bgc-accession
ORF18 O
19648.20826 O
O-antigen O
polymerase O
wzyE O
Bacteroides O
sp. O
2_1_7 O
29 O
ZP_05287114 B-bgc-accession
ORF19 O
20877.21968 O
group O
1 O
glycosyl O
transferase O
protein O
wdaN O
Dysgonomonas O
gadei O
ATCC O
BAA-286 O
42 O
ZP_08475479 B-bgc-accession
ORF20 O
22444.23694 O
O-antigen O
flippase O
wzxB O
Shewanella O
baltica O
OS625 O
81 O
EHC06312 B-bgc-accession
ORF21 O
23691.24794 O
aminotransferase O
fdtB O
Shewanella O
baltica O
OS195 O
81 O
YP_001555451 B-bgc-accession
ORF22 O
24796.25233 O
dTDP-D-Fucp3N O
acetyltransferase O
fdtC O
Shewanella O
baltica O
OS195 O
85 O
YP_001555452 B-bgc-accession
ORF23 O
25235.25657 O
dTDP-6-deoxy-3,4-keto-hexulose O
isomerase O
fdtA O
Shewanella O
putrefaciens O
200 O
72 O
ADV52549 B-bgc-accession
ORF24 O
25668.26534 O
glucose-1-phosphate O
thymidylyltransferase O
rmlA O
Shewanella O
putrefaciens O
200 O
79 O
ADV52548 B-bgc-accession
ORF25 O
26531.27619 O
dTDP-glucose-4 O
- O
6-dehydratase O
rmlB O
Aeromonas O
hydrophila O
93 O
AAM22544 B-bgc-accession
ORFd O
28234.31383 O
AcrB O
protein O
acrB O
Aeromonas O
hydrophila O
subsp O
. O
The O
chromatograms O
of O
Au8003 O
reaction O
product O
ophiobolin O
F O
extracted O
at O
m/z O
358 O
( O
a O
) O
: O
( O
I O
) O
GGPP+IPP O
, O
( O
II O
) O
FPP+IPP O
, O
( O
III O
) O
GPP+IPP O
, O
( O
IV O
) O
DMAPP+IPP O
and O
( O
V O
) O
IPP O
, O
and O
MS O
Spectra O
of O
peak O
1 O
( O
b O
) O
; O
chromatograms O
of O
Au13192 O
reaction O
product O
veridiene O
extracted O
at O
m/z O
272 O
( O
c O
) O
: O
( O
I O
) O
FPP+IPP O
, O
( O
II O
) O
GPP+IPP O
, O
( O
III O
) O
DMAPP+IPP O
, O
( O
IV O
) O
IPP O
and O
MS O
Spectra O
of O
peak O
2 O
( O
d O
) O
; O
chromatograms O
of O
phosphatase O
hydolysate O
of O
Au6298 O
reaction O
product O
FPP O
extracted O
at O
m/z O
222 O
( O
e O
) O
: O
( O
I O
) O
DMAPP+IPP O
, O
( O
II O
) O
IPP O
only O
and O
MS O
Spectra O
of O
peak O
3 O
( O
f O
) O
. O
For O
myeD O
, O
which O
encodes O
an O
amidohydrolase O
, O
a O
mutant O
ΔmyeD O
containing O
a O
1410 O
bp O
in-frame O
deletion O
within O
this O
gene O
was O
constructed O
. O
The O
cmrA O
and O
cmrB O
genes O
encode O
the O
ABC O
transporters O
, O
and O
cmrX O
encodes O
a O
UvrA-like O
protein O
of O
UV O
repair O
nuclease O
[ O
481 O
] O
. O
Peptide O
chimeras O
, O
in O
which O
the O
LctA O
leader O
peptide O
was O
appended O
to O
different O
core O
peptides O
, O
were O
processed O
at O
varying O
rates O
by O
the O
LctTp O
protease O
domain O
suggesting O
some O
role O
of O
the O
core O
sequence O
on O
substrate O
processing.349 O
Similarly O
, O
the O
LtnTp O
AMS O
transporter O
involved O
in O
biosynthesis O
of O
lacticin O
3147 O
has O
been O
shown O
to O
secrete O
various O
noncognate O
peptides O
attached O
to O
the O
LtnA2 O
leader O
peptide O
and O
to O
remove O
the O
leader O
peptide O
in O
the O
process.351 O
The O
presence O
of O
the O
class O
II O
lanthionine O
synthetase O
LtnM2 O
( O
section O
4 O
) O
was O
not O
required O
for O
transport O
by O
LtnTp O
. O
The O
phylogenetic O
analysis O
of O
ecdB O
gene O
present O
within O
the O
gene O
cluster O
of O
ECB O
of O
E. O
rugulosa O
NRRL O
11440 O
is O
close O
proximity O
to O
ApdR O
of O
A. O
nidulans O
FGSC O
A4 O
, O
which O
acts O
as O
a O
local O
regulator O
of O
the O
aspyridone O
biosynthetic O
gene O
cluster O
( O
Fig. O
1 O
) O
. O
A. O
circinalis O
310F O
insertion O
excision O
sequence O
is O
available O
under O
accession O
number O
EU603709 B-bgc-accession
. O
Both O
the O
A. O
circinalis O
AWQC131C O
and O
the O
Aph O
. O
This O
raised O
the O
question O
whether O
Mpz10 O
may O
catalyze O
the O
prenylation O
of O
phenazines O
in O
the O
biosynthesis O
of O
JBIR-46 O
, O
-47 O
, O
and O
-48 O
. O
It O
has O
been O
observed O
that O
phpL O
in O
both O
S. O
viridochromogenes25 O
and O
S. O
hygroscopicus17 O
encodes O
a O
variant O
( O
GXCXG O
) O
thioesterase O
motif O
, O
whereas O
phpM O
encodes O
the O
canonical O
GXSXG O
motif O
. O
However O
, O
information O
about O
other O
enzymes O
involved O
in O
kirromycin O
biosynthesis O
remained O
scarce O
. O
Acarbose O
kinase O
, O
GacK O
, O
and O
three O
transporters O
, O
GacX O
, O
GacY O
, O
and O
Gac O
W O
, O
are O
present O
within O
the O
cluster O
. O
Lincomycin O
, O
hormaomycin O
, O
tomaymycin O
, O
anthramycin O
and O
siberomycin O
are O
known O
to O
be O
derived O
from O
a O
common O
intermediate O
( O
3-vinyl-2,3-pyrroline-5-carboxylic O
acid O
) O
, O
and O
to O
constitute O
similar O
biosynthetic O
gene O
clusters O
[ O
130 O
] O
. O
In O
S. O
epidermidis O
genome O
, O
a O
cluster O
was O
identified O
on O
plasmid O
SAP106A O
( O
Fig. O
6 O
) O
, O
containing O
a O
single O
putative O
precursor O
peptide O
( O
SAP_106A002 O
) O
, O
a O
LanM O
determinant O
( O
SAP_106A003 O
, O
having O
22 O
% O
identity O
with O
HalM O
) O
and O
an O
additional O
LanP O
protein O
, O
besides O
the O
C39 O
protease O
of O
LanT O
homolog O
( O
SAP_106A001 O
) O
. O
hydrophila O
ATCC O
7966 O
99 O
YP_857382 B-bgc-accession
ORF1 O
665 O
.. O
1780 O
capsular O
polysaccharide O
transport O
protein O
wza O
Aeromonas O
hydrophila O
subsp O
. O
Specifically O
, O
in O
C. O
purpurea O
20.1 O
and O
A. O
take O
the O
idtG O
gene O
encoding O
the O
first O
pathway O
step O
was O
either O
absent O
or O
defective O
. O
The O
fourth O
ancestral O
contributor O
of O
a O
LOL O
cluster O
was O
E. O
amarillans O
( O
or O
a O
close O
relative O
) O
, O
with O
which O
the O
LOL O
cluster O
in O
E. O
canadensis O
and O
the O
LOL2 O
cluster O
in O
N. O
chisosum O
grouped O
in O
clade O
IV O
. O
Bmp7 O
could O
also O
dimerize O
two O
molecules O
of O
5 O
, O
albeit O
with O
reduced O
catalytic O
efficiency O
, O
to O
generate O
the O
OH-BDE O
product O
2,6-dibromo-4-(2,4,6-tribromophenoxy)phenol O
( O
14 O
) O
( O
Fig. O
5b O
and O
Supplementary O
Figs. O
23–24 O
) O
. O
Structure O
– O
activity O
analyses O
of O
these O
obtained O
biosynthetic O
intermediates O
reveal O
that O
the O
3-keto O
group O
, O
the O
C1β O
– O
OH O
, O
and O
the O
aromatic O
ring O
C O
are O
important O
for O
the O
inhibition O
of O
phosphatidylinositol O
3-kinase O
. O
jinggangensis O
TL01 O
( O
NC_020895 B-bgc-accession
) O
, O
Streptomyces O
sp. O
303MFCol5.2 O
( O
ARTR00000000 B-bgc-accession
) O
, O
Streptomyces O
sp. O
TOR3209 O
( O
AGNH00000000 B-bgc-accession
, O
( O
Hu O
et O
O O
al. O
, O
2012 O
) O
S. O
albus O
S4 O
( B-bgc-accession
CADY00000000 O
, O
( O
Seipke O
et O
O O
al. O
, O
2011b O
) O
) O
, O
S. O
albus O
J1074 B-bgc-accession
( O
NC_020990 O
Streptomyces O
sp. O
SM8 O
( O
AMPN00000000 B-bgc-accession
) O
, O
Streptomyces O
sp. O
NRRL2288 O
( O
JX131329 B-bgc-accession
) O
, O
( O
Yan O
et O
O O
al. O
, O
2012 O
) O
) O
, O
Streptomyces O
sp. O
LaPpAH-202 O
( B-bgc-accession
ARDM00000000 O
) O
, O
Streptomyces O
sp. O
CNY228 O
( B-bgc-accession
ARIN01000033 O
) O
The O
phoRP O
system O
of O
S. O
filipinensis O
was O
cloned O
and O
transcriptionally O
characterised O
. O
The O
linear O
cylindrocyclophane-related O
cylindrofridins O
28‒30 O
also O
showed O
antimicrobial O
activity O
in O
the O
low O
µM O
range O
against O
S. O
aureus O
Newman O
( O
MICs O
between O
3.0 O
and O
11.3 O
µM O
) O
and O
S. O
pneumoniae O
( O
MICs O
in O
the O
range O
2.8‒12.1 O
µM O
; O
only O
DSM-strains O
) O
. O
It O
might O
either O
act O
as O
an O
antibiotic O
killing O
bacterial O
competitors O
of O
P. O
larvae O
in O
the O
honey O
bee O
larval O
gut O
or O
it O
might O
act O
as O
a O
toxin O
helping O
P. O
larvae O
to O
kill O
the O
honey O
bee O
larvae O
. O
Bacillus O
cereus O
VD045 O
Bioinformatic O
analysis O
of O
the O
draft O
sequence O
of O
VD045 O
revealed O
the O
presence O
of O
two O
putative O
lantibiotic O
biosynthetic O
clusters O
( O
Fig. O
5 O
) O
, O
present O
in O
the O
vicinity O
, O
on O
the O
three O
contigs O
( O
conti1.34 O
, O
1.35 O
and O
1.36 O
) O
, O
with O
their O
dedicated O
transporters O
and O
immunity O
genes O
. O
The O
biological O
activity O
of O
TTN O
makes O
it O
an O
important O
lead O
for O
drug O
discovery O
, O
whereas O
its O
rare O
dialkylmaleic O
anhydride O
moiety O
and O
structural O
similarity O
to O
tautomycin O
( O
TTM O
) O
, O
another O
potent O
phosphatase O
inhibitor O
with O
tremendous O
medicinal O
potential O
, O
draws O
attention O
to O
novel O
biosynthetic O
chemistries O
responsible O
for O
its O
production O
. O
In O
total O
, O
over O
7000 O
capuramycin O
analogs O
were O
synthesized O
using O
different O
combinations O
of O
the O
aforementioned O
semisynthetic O
approaches O
and O
screened O
for O
antimycobacterial O
activity O
[ O
63,64 O
] O
, O
ultimately O
yielding O
24 O
( O
named O
RS-124922 O
by O
Sankyo O
Co. O
; O
renamed O
to O
SQ922 O
by O
Sequella O
Inc. O
after O
licensing O
the O
library O
) O
, O
and O
28 O
( O
RS-118641 O
; O
SQ641 O
) O
as O
leads O
[ O
65,66 O
] O
. O
The O
sequences O
of O
the O
14 O
A. O
hydrophila O
O O
antigen O
gene O
clusters O
have O
been O
deposited O
in O
the O
GenBank O
database O
with O
accession O
numbers O
MH449673 B-bgc-accession
to I-bgc-accession
MH449686 I-bgc-accession
. O
MMAR_2474 O
protein O
exceptionally O
biosynthesized O
methylated O
alkyl-resorcinol O
and O
methylated O
acyl-phloroglucinol O
products O
from O
the O
same O
catalytic O
core O
. O
The O
biosynthetic O
gene O
cluster O
was O
cloned O
as O
a O
90 O
kb O
DNA O
fragment O
[ O
377,378 O
] O
( O
GB O
No. O
AJ862840 B-bgc-accession
) O
. O
Furthermore O
, O
in O
flowers O
the O
sesquiterpenes O
compounds O
were O
observed O
to O
be O
the O
main O
group O
( O
0.42 O
% O
) O
, O
followed O
by O
one O
diterpene O
compound O
( O
0.01 O
% O
) O
. O
GenBank O
accession O
numbers O
: O
M87280 B-bgc-accession
for O
Pantoa O
agglomerans O
, O
CP001875 B-bgc-accession
for O
Pantoa O
ananatis O
, O
and O
LC317091 B-bgc-accession
and O
LC317092 B-bgc-accession
for O
Pseudomonas O
sp. O
strain O
Akiakane O
[ O
48 O
] O
A O
common O
strategy O
to O
improve O
the O
yield O
is O
the O
optimization O
of O
culture O
conditions O
[ O
73 O
] O
. O
Ergot O
alkaloid O
( O
EAS O
) O
loci O
In O
the O
scaffolded O
assemblies O
of O
the O
C. O
purpurea O
and O
E. O
festucae O
Fl1 O
genomes O
, O
and O
the O
scaffolded O
E2368 O
assembly O
of O
2010 O
- O
06 O
, O
the O
EAS O
genes O
were O
clustered O
within O
individual O
supercontigs O
( O
Figure O
6 O
) O
. O
These O
three O
genes O
are O
clustered O
with O
two O
other O
ORFs O
that O
encode O
a O
putative O
extracellular O
serine O
protease O
( O
subP O
) O
and O
an O
ABC O
transporter O
( O
subT O
) O
, O
respectively O
. O
Streptomyces O
viridochromogenes O
DSM O
40736 O
S. O
viridochromogenes O
is O
a O
producer O
of O
avilamycin O
A O
, O
an O
oligosaccharide O
antibiotic O
. O
Although O
clinical O
detection O
, O
epidemiological O
surveillance O
, O
and O
tracing O
of O
pathogenic O
bacteria O
are O
typically O
done O
using O
serotyping O
methods O
that O
rely O
on O
identifying O
bacterial O
surface O
O O
antigens O
through O
agglutination O
reactions O
with O
antisera O
, O
molecular O
methods O
such O
as O
the O
one O
we O
have O
developed O
may O
be O
quicker O
and O
more O
cost O
effective O
. O
We O
amplified O
the O
Au13192 O
coding O
gene O
, O
which O
contained O
nine O
exons O
, O
by O
overlap O
extension O
PCR O
( O
Supplementary O
Fig. O
S8 O
, O
Table O
S8 O
) O
using O
A. O
ustus O
094102 O
genomic O
DNA O
as O
template O
. O
Functional O
characterization O
of O
terpene O
synthase O
genes O
in O
transgenic O
A. O
thaliana O
leaves O
To O
test O
A. O
thaliana O
in O
a O
transgenic O
expression O
system O
for O
the O
production O
of O
Salvia O
terpenes O
, O
the O
following O
genes O
were O
selected O
from O
S. O
guaranitica O
: O
farnesyl O
pyrophosphate O
synthases O
( O
FPPS O
) O
, O
geranyl O
diphosphate O
synthases O
( O
GPPS O
) O
and O
(3S)-linalool O
synthase O
( O
LINS O
) O
encoded O
by O
SgFPPS O
, O
SgGPPS O
and O
SgLINS O
, O
respectively O
. O
Gene O
arrangement O
, O
functional O
annotation O
and O
domain O
structure O
of O
the O
puw O
gene O
cluster O
( O
56.7 O
kbp O
) O
from O
Cylindrospermum O
alatosporum O
CCALA O
988 O
. O
NMR O
spectroscopic O
investigations O
in O
comparison O
to O
the O
educt O
1-hydroxyphenazine O
confirmed O
that O
product O
3 O
was O
1-hydroxy-4-dimethylallyl-phenazine O
( O
Figure O
5 O
) O
. O
However O
, O
the O
toxins O
that O
have O
been O
discussed O
here O
are O
mainly O
peptides O
or O
proteins O
in O
nature O
, O
except O
for O
tetrodotoxin O
, O
saxitoxin O
, O
lipophilic O
alkaloids O
, O
and O
batrachotoxin O
. O
The O
biosynthetic O
gene O
cluster O
was O
cloned O
[ O
72 O
] O
( O
GB O
No. O
AM409314 B-bgc-accession
) O
. O
Interestingly O
, O
the O
lps O
biosynthetic O
gene O
cluster O
of O
Xcc O
, O
which O
comprises O
fifteen O
genes O
, O
is O
also O
located O
between O
the O
metB O
and O
etfA O
genes O
[ O
24 O
] O
. O
Anthracimycin O
( O
1 O
) O
was O
obtained O
from O
the O
4 O
liter O
fermentation O
of O
N. O
kunsanensis O
with O
impurities O
, O
but O
was O
found O
to O
have O
a O
comparable O
1H O
NMR O
spectra O
( O
Table O
1 O
, O
Supplementary O
Figure O
S1a O
and O
b O
) O
as O
our O
anthracimycin O
standard O
that O
we O
purified O
from O
Streptomyces O
sp. O
T676 O
. O
In O
Europe O
Aphanizomenon O
gracile O
and O
Cuspidothrix O
issatschenkoi O
are O
the O
only O
known O
producers O
of O
PSP O
toxins O
and O
are O
found O
in O
Southwest O
and O
Central O
European O
freshwater O
bodies O
. O
Two O
resistance-related O
genes O
, O
otrA O
and O
otrB O
, O
are O
present O
at O
both O
ends O
. O
Thus O
, O
at O
least O
two O
proteins O
, O
MccC O
and O
MccE O
, O
are O
implicated O
in O
the O
self-resistance O
of O
the O
producing O
strains O
to O
microcin O
C. O
Furthermore O
, O
MccF O
also O
involves O
in O
self-immunity O
[ O
133,134 O
] O
. O
Whole O
genome O
shotgun O
sequencing O
was O
also O
conducted O
on O
the O
genomes O
of O
the O
clover O
black O
patch O
pathogen O
, O
Slafractonia O
leguminicola O
( O
Alhawatema O
et O
al. O
2015 O
) O
, O
and O
the O
endophyte O
, O
Alternaria O
oxytropis O
( O
Pryor O
et O
al. O
2009 O
) O
, O
both O
of O
which O
are O
known O
swainsonine O
producers O
in O
the O
order O
Pleosporales O
. O
aurantiaca O
DSM O
19603 O
T O
196 O
368 O
, O
257 O
, O
219 O
2-hydroxy-phenazine O
[42]c O
224 O
371 O
, O
249 O
, O
215 O
phenazine-1-carboxylic O
acid O
[41]c O
DSM O
50083 O
T O
Pseudomonas O
chlororaphis O
subsp O
. O
The O
exact O
function O
of O
these O
proteins O
, O
MmpL4a O
and O
MmpL4b O
, O
is O
not O
known O
in O
detail O
although O
a O
recent O
study O
performed O
in O
M. O
tuberculosis O
suggests O
that O
MmpL O
proteins O
( O
MmpL7 O
) O
may O
channel O
the O
polyketide O
products O
during O
their O
synthesis O
by O
the O
polyketide O
synthase O
, O
coupling O
synthesis O
and O
export O
[ O
28 O
] O
. O
The O
samples O
were O
subjected O
to O
alcohol O
series O
dehydration O
( O
50–100 O
% O
ethanol O
) O
and O
then O
chemically O
dried O
using O
hexamethyldisilazane O
Amplification O
and O
analysis O
of O
a O
zeaxanthin O
diglucoside O
biosynthetic O
gene O
cluster O
from O
Pseudomonas O
sp. O
102515 O
As O
described O
above O
, O
P. O
psychrotolerans O
is O
the O
closest O
relative O
strain O
to O
Pseudomonas O
sp. O
102515 O
. O
Notably O
, O
inactivation O
of O
rdmA O
and O
overexpression O
of O
rdmF O
led O
to O
increased O
production O
of O
RDM O
A O
by O
~ O
O O
2.0-fold O
and O
~ O
O O
2.5-fold O
, O
reaching O
yields O
of O
155.3 O
O O
± O
O O
1.89 O
and O
184.8 O
O O
± O
Table O
5 O
Detected O
LAP O
gene O
cluster O
PhylumLocus O
Tag O
of O
dehydrogenaseSimilar O
to O
† O
Reference O
# O
Clostridium O
botulinum O
A2 O
BoNT/A2 O
Kyoto-FFirmicutes O
CLM_0573 O
clostridiolysin O
S O
Clostridium O
botulinum O
A O
BoNT/A1 O
ATCC O
19397Firmicutes O
CLB_0528 O
clostridiolysin O
S O
Clostridium O
botulinum O
A O
BoNT/A1 O
HallFirmicutes O
CLC_0561 O
clostridiolysin O
S O
Clostridium O
botulinum O
BoNT/B1 O
OkraFirmicutes O
CLD_0261 O
clostridiolysin O
S O
Clostridium O
botulinum O
BoNT/A3 O
Loch O
MareeFirmicutes O
CLK_3698 O
clostridiolysin O
S O
Clostridium O
botulinum O
Ba4 O
str O
. O
Kirromycin O
shows O
strong O
antibacterial O
activity O
against O
Streptococci O
, O
some O
Enterococci O
, O
Neisseria O
, O
and O
Haemophilus O
, O
but O
not O
to O
S. O
aureus O
. O
Staphylococcus O
epidermidis O
plasmid O
SAP106A O
YP_006939047.1 B-bgc-accession
SAP106A_001 O
41 O
Unknown O
LanM O
14 O
. O
Lechevalieria O
aerocolonigenes O
myeP O
( O
75/83 O
) O
Tryptophan O
halogenase O
mymQ O
411 O
KynU O
, O
NP_250770.1 B-bgc-accession
( O
44/60 O
) O
; O
Pseudomonas O
aeruginosa O
PAO1 O
myeQ O
( O
51/64 O
) O
Kynureninase O
( O
KYN O
) O
mymR3 O
691 O
SBU95407.1 B-bgc-accession
( O
56/67 O
) O
; O
Streptomyces O
sp. O
OspMP-M45 O
myeR3 O
( O
57/68 O
) O
SARP O
family O
transcriptional O
regulator O
orf-3 O
38 O
None O
predicted O
in O
NCBI O
- O
Unknown O
Results O
and O
Discussion O
Xanthomonad-inhibitory O
Activity O
of O
P. O
putida O
BW11M1 O
Screening O
of O
a O
collection O
of O
Pseudomonas O
strains O
isolated O
from O
tropical O
crop O
roots O
[ O
33 O
] O
revealed O
a O
broad O
xanthomonad-inhibitory O
activity O
for O
the O
banana O
rhizosphere O
isolate O
P. O
putida O
BW11M1 O
. O
At O
the O
downstream O
of O
PKS O
genes O
, O
the O
genes O
involved O
in O
the O
biosynthesis O
of O
methoxymalonyl-CoA O
from O
glycerol O
as O
a O
polyketide O
precursor O
( O
Chan O
and O
Thomas O
2010 O
) O
were O
also O
found O
from O
BafAI O
to O
BafAV O
. O
Similar O
to O
other O
lasso O
peptides O
, O
LarA O
is O
the O
precursor O
peptide O
which O
is O
processed O
by O
LarB O
, O
LarC O
and O
LarD O
and O
then O
exported O
by O
the O
transporter O
LarF O
[ O
73 O
] O
. O
Similarly O
BAGEL4 O
uses O
HMM O
to O
detect O
core O
RiPP O
encoding O
genes O
, O
however O
, O
it O
is O
independent O
from O
the O
genome O
ORF O
calls O
, O
enabling O
it O
to O
better O
detect O
the O
small O
precursor O
peptides O
found O
in O
RiPP O
encoding O
gene O
clusters O
. O
Brominated O
derivatives O
1 O
C38H57BrN2O8 O
747.3216 O
d O
747.3226 O
1.3 O
88.0 O
11 O
OCONH2 O
CH3 O
OCONH2 O
CH2Br O
Carbamidocyclophane O
M O
( O
1 O
) O
e O
, O
[ O
t.s O
. O
] O
2 O
C38H56Br2N2O8 O
825.2336 O
d O
825.2331 O
0.6 O
100 O
11 O
OCONH2 O
CH2Br O
OCONH2 O
CH2Br O
Carbamidocyclophane O
N O
( O
2 O
) O
e O
, O
[ O
t.s O
. O
] O
3 O
C38H56Br2N2O8 O
825.2340 O
d O
825.2331 O
1.1 O
100 O
11 O
OCONH2 O
CH3 O
OCONH2 O
CHBr2 O
Carbamidocyclophane O
O O
( O
3 O
) O
e O
, O
[ O
t.s O
. O
] O
4 O
C38H55Br3N2O8 O
903.1425 O
d O
903.1436 O
1.2 O
100 O
11 O
OCONH2 O
CH2Br O
OCONH2 O
CHBr2 O
Carbamidocyclophane O
P O
( O
4 O
) O
e O
, O
[ O
t.s O
. O
] O
5 O
C38H54Br4N2O8 O
981.0529 O
d O
981.0541 O
1.2 O
99.1 O
11 O
OCONH2 O
CHBr2 O
OCONH2 O
CHBr2 O
Carbamidocyclophane O
Q O
( O
5 O
) O
e O
, O
[ O
t.s O
. O
] O
6 O
C37H56BrNO7 O
704.3173 O
d O
704.3167 O
0.9 O
100 O
10 O
OCONH2 O
CH3 O
OH O
CH2Br O
Carbamidocyclophane O
R O
( O
6 O
) O
e O
, O
[ O
t.s O
. O
] O
7 O
C37H55Br2NO7 O
782.2266 O
d O
782.2272 O
0.8 O
95.0 O
10 O
OCONH2 O
CH3 O
OH O
CHBr2 O
Carbamidocyclophane O
S O
( O
7 O
) O
e O
, O
[ O
t.s O
. O
] O
8 O
C37H54Br3NO7 O
860.1382 O
d O
860.1378 O
0.5 O
95.6 O
10 O
OCONH2 O
CH2Br O
OH O
CHBr2 O
Carbamidocyclophane O
T O
( O
8) O
e O
, O
[ O
t.s O
. O
] O
9 O
C37H53Br4NO7 O
938.0499 O
d O
938.0483 O
1.7 O
100 O
10 O
OCONH2 O
CHBr2 O
OH O
CHBr2 O
Carbamidocyclophane O
U O
( O
9 O
) O
e O
, O
[ O
t.s O
. O
] O
37 O
C37H56BrNO6 O
688.3207 O
688.3218 O
1.6 O
100 O
10 O
OCONH2 O
CH3 O
H O
CH2Br O
Putative O
new O
[7.7]paracyclophane O
f O
H O
CH3 O
OCONH2 O
CH2Br O
38 O
C37H53Br2NO8 O
796.2059 O
796.2065 O
0.8 O
87.6 O
11 O
OCONH2 O
CH2OH O
O O
CHBr2 O
Putative O
new O
[7.7]paracyclophane O
f O
OCONH2 O
CHBrOH O
O O
CH2Br O
O O
CH2OH O
OCONH2 O
CHBr2 O
O O
CHBrOH O
OCONH2 O
CH2Br O
3940 O
C37H55Br2NO6 O
766.2316 O
766.2322 O
766.2323 O
0.9 O
0.1 O
85.4 O
92.7 O
10 O
10 O
OCONH2 O
CH2Br O
H O
CH2Br O
Putative O
new O
[7.7]paracyclophanes O
f O
OCONH2 O
CH3 O
H O
CHBr2 O
H O
CH3 O
OCONH2 O
CHBr2 O
41 O
C37H54Br3NO6 O
844.1424 O
844.1428 O
0.5 O
97.5 O
10 O
OCONH2 O
CH2Br O
H O
CHBr2 O
Putative O
new[7.7]paracyclophane O
f O
H O
CH2Br O
OCONH2 O
CHBr2 O
42 O
C37H53Br4NO6 O
922.0541 O
922.0534 O
0.8 O
100 O
10 O
OCONH2 O
CHBr2 O
H O
CHBr2 O
Putative O
new O
[7.7]paracyclophane O
f O
43 O
C36H55BrO6 O
661.3077 O
661.3109 O
4.8 O
79.5 O
9 O
OH O
CH3 O
OH O
CH2Br O
Putative O
new O
[7.7]paracyclophane O
f O
Chlorinated O
derivatives O
10 O
C38H57ClN2O8 O
703.3731 O
703.3731 O
0.0 O
100 O
11 O
OCONH2 O
CH3 O
OCONH2 O
CH2Cl O
Carbamidocyclophane O
D O
( O
10 O
) O
e O
, O
[ O
5 O
] O
11 O
C38H56Cl2N2O8 O
737.3332 O
737.3341 O
1.2 O
87.5 O
11 O
OCONH2 O
CH2Cl O
OCONH2 O
CH2Cl O
Carbamidocyclophane O
J O
( O
11 O
) O
e O
, O
[ O
7 O
] O
12 O
C38H56Cl2N2O8 O
737.3339 O
737.3341 O
0.3 O
88.9 O
11 O
OCONH2 O
CH3 O
OCONH2 O
CHCl2 O
Carbamidocyclophane O
C O
( O
12 O
) O
e O
, O
[ O
5 O
] O
13 O
C38H55Cl3N2O8 O
771.2966 O
771.2951 O
1.9 O
91.1 O
11 O
OCONH2 O
CH2Cl O
OCONH2 O
CHCl2 O
Carbamidocyclophane O
B O
( O
13 O
) O
e O
, O
[ O
5 O
] O
14 O
C38H54Cl4N2O8 O
805.2559 O
805.2562 O
0.4 O
92.4 O
11 O
OCONH2 O
CHCl2 O
OCONH2 O
CHCl2 O
Carbamidocyclophane O
A O
( O
14 O
) O
e O
, O
[ O
5 O
] O
15 O
C37H56ClNO7 O
660.3672 O
660.3673 O
0.2 O
96.7 O
10 O
OCONH2 O
CH3 O
OH O
CH2Cl O
Carbamidocyclophane O
I O
( O
15 O
) O
e O
, O
[ O
7 O
] O
16 O
C37H55Cl2NO7 O
694.3269 O
694.3283 O
2.0 O
89.2 O
10 O
OCONH2 O
CH3 O
OH O
CHCl2 O
Carbamidocyclophane O
K O
( O
16 O
) O
e O
, O
[ O
7 O
] O
17 O
C37H54Cl3NO7 O
728.2903 O
728.2893 O
1.2 O
86.4 O
10 O
OCONH2 O
CH2Cl O
OH O
CHCl2 O
Carbamidocyclophane O
L O
( O
17 O
) O
e O
, O
[ O
7 O
] O
18 O
C37H53Cl4NO7 O
762.2499 O
762.2503 O
0.5 O
100 O
10 O
OCONH2 O
CHCl2 O
OH O
CHCl2 O
Carbamidocyclophane O
F O
( O
18 O
) O
e O
, O
[ O
6 O
] O
21 O
C36H55ClO6 O
617.3626 O
617.3614 O
1.9 O
93.2 O
9 O
OH O
CH3 O
OH O
CH2Cl O
Cylindrocyclophane O
A1(21 O
) O
e O
, O
[ O
8 O
] O
22 O
C36H54Cl2O6 O
651.3219 O
651.3225 O
0.9 O
80.4 O
9 O
OH O
CH3 O
OH O
CHCl2 O
Cylindrocyclophane O
A2 O
( O
22 O
) O
e O
, O
[ O
8 O
] O
23 O
C36H53Cl3O6 O
685.2828 O
685.2835 O
1.0 O
84.8 O
9 O
OH O
CH2Cl O
OH O
CHCl2 O
Cylindrocyclophane O
A3 O
( O
23 O
) O
e O
, O
[ O
8 O
] O
24 O
C36H52Cl4O6 O
719.2434 O
719.2445 O
1.5 O
86.9 O
9 O
OH O
CHCl2 O
OH O
CHCl2 O
Cylindrocyclophane O
A4 O
( O
24 O
) O
e O
, O
[ O
8 O
] O
31 O
C36H55ClO5 O
601.3665 O
601.3665 O
0.5 O
99.3 O
9 O
OH O
CH3 O
H O
CH2Cl O
Cylindrocyclophane O
C1 O
, O
[ O
8 O
] O
32 O
C36H54Cl2O5 O
635.3273 O
635.3276 O
0.5 O
95.6 O
9 O
OH O
CH3 O
H O
CHCl2 O
Cylindrocyclophane O
C2 O
, O
[ O
8 O
] O
33 O
C36H53Cl3O5 O
669.2898 O
669.2886 O
1.8 O
100 O
9 O
OH O
CH2Cl O
H O
CHCl2 O
Cylindrocyclophane O
C3 O
, O
[ O
8 O
] O
34 O
C36H52Cl4O5 O
703.2485 O
703.2496 O
1.6 O
100 O
9 O
OH O
CHCl2 O
H O
CHCl2 O
Cylindrocyclophane O
C4 O
, O
[ O
8 O
] O
44 O
C37H56ClNO6 O
644.3724 O
644.3723 O
0.2 O
100 O
10 O
OCONH2 O
CH3 O
H O
CH2Cl O
Putative O
new O
[7.7]paracyclophane O
f O
H O
CH3 O
OCONH2 O
CH2Cl O
45 O
C37H55Cl2NO7 O
694.3264 O
694.3283 O
2.7 O
84.3 O
10 O
OCONH2 O
CH2Cl O
OH O
CH2Cl O
Putative O
new O
[7.7]paracyclophane O
f O
OH O
CH3 O
OCONH2 O
CHCl2 O
46 O
47 O
C37H55Cl2NO6 O
678.3330 O
678.3332 O
678.3334 O
0.6 O
0.3 O
100 O
100 O
10 O
10 O
OCONH2 O
CH2Cl O
H O
CH2Cl O
Putative O
new O
[7.7]paracyclophanes O
f O
OCONH2 O
CH3 O
H O
CHCl2 O
H O
CH3 O
OCONH2 O
CHCl2 O
48 O
C37H54Cl3NO6 O
712.2952 O
712.2944 O
1.1 O
87.1 O
10 O
OCONH2 O
CH2Cl O
H O
CHCl2 O
Putative O
new O
[7.7]paracyclophane O
f O
H O
CH2Cl O
OCONH2 O
CHCl2 O
49 O
C37H53Cl4NO6 O
746.2559 O
746.2554 O
0.3 O
100 O
10 O
OCONH2 O
CHCl2 O
H O
CHCl2 O
Putative O
new O
[7.7]paracyclophane O
f O
50 O
C36H54Cl2O6 O
651.3223 O
651.3225 O
0.9 O
79.3 O
9 O
OH O
CH2Cl O
OH O
CH2Cl O
Putative O
new O
[7.7]paracyclophane O
f O
51 O
C36H54Cl2O5 O
635.3275 O
635.3276 O
0.2 O
100 O
9 O
H O
CH3 O
OH O
CHCl2 O
Putative O
new O
[7.7]paracyclophane O
f O
OH O
CH2Cl O
H O
CH2Cl O
52 O
C36H54Cl2O4 O
619.3323 O
619.3326 O
0.5 O
100 O
9 O
H O
CH2Cl O
H O
CH2Cl O
Putative O
new O
[7.7]paracyclophane O
f O
H O
CH3 O
H O
CHCl2 O
Non-halogenated O
derivatives O
19 O
C38H58N2O8 O
669.4122 O
669.412 O
0.3 O
100 O
11 O
OCONH2 O
CH3 O
OCONH2 O
CH3 O
Carbamidocyclophane O
E O
( O
19 O
) O
e O
, O
[ O
5 O
] O
20 O
C37H57NO7 O
626.4064 O
626.4062 O
0.3 O
100 O
10 O
OCONH2 O
CH3 O
OH O
CH3 O
Carbamidocyclophane O
H O
( O
20 O
) O
e O
, O
[ O
7 O
] O
25 O
C36H56O6 O
583.3994 O
583.4004 O
1.7 O
83.1 O
9 O
OH O
CH3 O
OH O
CH3 O
Cylindrocyclophane O
A O
( O
25 O
) O
e O
, O
[ O
4 O
] O
35 O
C36H56O5 O
567.4004 O
567.4055 O
2.3 O
89.7 O
9 O
OH O
CH3 O
H O
CH3 O
Cylindrocyclophane O
C O
, O
[ O
9 O
] O
36 O
C36H56O4 O
551.4102 O
551.4106 O
0.7 O
100 O
9 O
H O
CH3 O
H O
CH3 O
Cylindrocyclophane O
F O
, O
[ O
9 O
] O
53 O
C37H55NO7 O
624.3888 O
624.3906 O
2.9 O
88.7 O
11 O
OCONH2 O
CH3 O
O O
CH3 O
Putative O
new O
[7.7]paracyclophane O
f O
54 O
C37H57NO6 O
610.4113 O
610.4113 O
0.0 O
100 O
10 O
OCONH2 O
CH3 O
H O
CH3 O
Putative O
new O
[7.7]paracyclophane O
f O
a O
Abbreviations O
: O
Meas O
. O
Genome O
mining O
for O
orthologs O
of O
LtnJ O
uncovered O
three O
other O
putative O
dehydrogenases;421 O
SacJ O
, O
which O
is O
located O
in O
the O
Staphylococcus O
aureus O
C55 O
operon O
for O
the O
biosynthesis O
of O
staphylococcin O
C55,427 O
a O
lanthipeptide O
predicted O
to O
be O
very O
similar O
in O
structure O
to O
lacticin O
3147 O
; O
PenN O
from O
Pediococcus O
pentosaceus O
FBB61 O
, O
which O
is O
required O
to O
access O
bioactive O
pediocin O
A;428 O
and O
NpnJ O
( O
originally O
named O
NstJ),421 O
which O
is O
from O
a O
cyanobacterium O
Nostoc O
punctiforme O
PCC73102 O
cluster O
that O
contains O
a O
LanM O
but O
does O
not O
produce O
lanthipeptides O
as O
the O
precursor O
peptides O
( O
NpnA O
) O
do O
not O
contain O
cysteines.368 O
LtnJ O
, O
NpnJ O
, O
PenN O
, O
and O
SacJ O
share O
many O
conserved O
residues O
including O
three O
or O
four O
conserved O
Cys O
residues O
predicted O
to O
bind O
zinc O
( O
NpnJ O
has O
three O
of O
the O
conserved O
Cys O
, O
LtnJ O
, O
SacJ O
, O
and O
PenN O
have O
all O
four).429 O
These O
four O
enzymes O
have O
been O
classified O
as O
LanJA-type O
dehydrogenases O
based O
on O
their O
zinc O
and O
NADPH-dependence.425 O
The O
dehydrogenase O
activity O
for O
PenN O
and O
SacJ O
was O
demonstrated O
in O
vivo O
with O
the O
lacticin O
3147 O
substrate O
, O
confirming O
their O
function O
and O
suggesting O
that O
these O
enzymes O
do O
not O
require O
a O
leader O
peptide O
as O
a O
non-native O
substrate O
was O
accepted.429 O
Specifically O
, O
supplementing O
the O
ΔltnJ O
strain O
described O
above O
with O
penN O
restored O
d-Ala O
formation O
in O
both O
Ltnα O
and O
Ltnβ O
, O
whereas O
supplementation O
with O
sacJ O
restored O
d-Ala O
formation O
in O
Ltnα O
but O
not O
in O
Ltnβ O
. O
The O
whole O
DNA O
sequence O
of O
the O
S. O
venezuelae O
genome O
was O
determined O
, O
including O
the O
chloramphenicol O
biosynthetic O
gene O
cluster O
[ O
420 O
] O
( O
GB O
Nos. O
FR845719 B-bgc-accession
and O
AF262220 B-bgc-accession
) O
. O
Two O
putative O
halogenase O
genes O
, O
mymM O
and O
mymP O
, O
were O
found O
in O
S. O
olivaceus O
FXJ8.012Δ1741 O
, O
while O
only O
one O
candidate O
, O
myeP O
, O
was O
present O
in O
S. O
sp. O
FXJ1.235 O
. O
Unlike O
the O
ast O
cluster O
, O
where O
there O
are O
multiple O
HAD-like O
enzymes O
encoded O
( O
one O
terpene O
synthase O
and O
two O
phosphatases O
) O
, O
the O
putative O
nanangenine O
cluster O
only O
encodes O
one O
such O
enzyme O
, O
FE257_006542 O
. O
Results O
and O
discussion O
Biosynthetic O
origin O
of O
the O
polycyclic O
scaffold O
of O
TXNs O
TXN-A O
was O
originally O
isolated O
from O
S. O
bottropensis O
DO-45 O
with O
the O
isolation O
of O
20 O
mg O
from O
an O
18 O
L O
fermentation O
broth;1,2 O
however O
this O
titer O
was O
not O
efficient O
enough O
for O
biosynthetic O
studies O
. O
Swainsonine O
is O
an O
indolizidine O
alkaloid O
that O
is O
produced O
by O
insect O
and O
plant O
pathogens O
and O
symbionts O
belonging O
to O
the O
order O
Hypocreales O
, O
Chaetothyriales O
, O
Onygenales O
, O
Pleosporales O
, O
and O
Leotiomycetes O
. O
The O
cluster O
houses O
genes O
for O
3-hydroxybutyryl-CoA O
dehydrogenase O
( O
tueI O
) O
and O
for O
a O
carboxylating O
enoyl-thioester O
reductase O
( O
tueH O
) O
bolstering O
the O
identification O
of O
the O
cluster O
as O
governing O
production O
of O
a O
butyrate O
unit-containing O
polyketide.38 O
The O
suitability O
of O
our O
primer O
set O
to O
detect O
phenazine O
genes O
in O
Pseudomonas O
species O
was O
further O
demonstrated O
by O
performing O
a O
database O
search O
that O
matched O
perfectly O
several O
phenazine O
genes O
, O
e.g. O
, O
P. O
chlororaphis O
( O
L48339 B-bgc-accession
) O
, O
Pseudomonas O
sp. O
M18 O
( O
FJ494909 B-bgc-accession
) O
, O
P. O
aeruginosa O
( O
FM209186 B-bgc-accession
, O
CP000744 B-bgc-accession
, O
CP000438 B-bgc-accession
, O
AE004091 B-bgc-accession
, O
AF005404 B-bgc-accession
) O
. O
Different O
phycotoxins O
cause O
distinct O
poisoning O
events O
. O
Results O
and O
Discussion O
Identification O
of O
the O
Conglobatin O
Biosynthetic O
Gene O
Cluster O
Conglobatin O
is O
a O
symmetrical O
polyketide O
macrodiolide O
, O
and O
inspection O
of O
its O
structure O
suggests O
that O
its O
assembly O
is O
governed O
by O
an O
NRPS/PKS O
biosynthetic O
gene O
cluster O
. O
= O
Epichloë O
canadensis O
, O
FaTG-2 O
= O
Neotyphodium O
species O
FaTG-2 O
, O
N. O
chi O
= O
Neotyphodium O
chisosum O
, O
N. O
coe O
. O
Ouabain O
and O
digoxin O
are O
the O
typical O
endogenous O
cardiac O
glycosides O
. O
Phylogeny O
of O
three O
LOL O
genes O
, O
lolC O
, O
lolN O
, O
and O
lolP. O
Pseudogenes O
of O
lolC O
and O
lolP O
are O
labeled O
lolCψ O
and O
lolPψ O
, O
respectively O
. O
The O
leader O
sequence O
is O
removed O
during O
the O
transport O
out O
of O
the O
cell O
by O
the O
bifunctional O
enzyme O
LanT O
( O
transporter O
with O
N-terminal O
protease O
) O
[31].Table O
3 O
Detected O
putative O
lanthipeptide O
gene O
clusters O
PhylumLanthipeptide O
classLocus O
tag O
of O
the O
lanthipeptide O
modifying O
enzyme O
LanSimilar O
to O
† O
Reference O
# O
Clostridium O
cellulovorans O
743B O
, O
ATCC O
35296FirmicutesI O
Clocel_4251 O
Clocel_4256 O
Clocel_4262 O
Clostridium O
kluyveri O
DSM O
555FirmicutesI O
CKL_3505 O
Bifidobacterium O
longum O
DJO10AActino-bacteriaII O
BLD_1651 O
[ O
25 O
] O
Clostridium O
acetobutylicum O
ATCC O
824FimicutesII O
CA_C0082 O
Clostridium O
acetobutylicum O
DSM O
1731FimicutesII O
SMB_G0083 O
Clostridium O
acetobutylicum O
EA O
2018FimicutesII O
CEA_G0073 O
Clostridium O
beijerinckii O
NCIMB O
8052FimicutesII O
Cbei_4586 O
[ O
25 O
] O
Clostridium O
botulinum O
H04402 O
065FimicutesII O
H04402_00616 O
H04402_00617 O
lichenicidin O
Clostridium O
cellulovorans O
743B O
, O
ATCC O
35296FimicutesII O
Clocel_0875 O
lichenicidin[32]II O
Clocel O
_ O
4225 O
Clocel_4228 O
Caldicellulosiruptor O
lactoaceticus O
6A O
, O
DSM O
9545FimicutesII O
Calla_2060 O
Caldicellulosiruptor O
bescii O
Z-1320 O
, O
DSM O
6725FimicutesII O
Athe_1107 O
lichenicidin[32 O
] O
Caldicellulosiruptor O
kristjanssonii O
177R1B O
, O
DSM O
12137FimicutesII O
Calkr_0299 O
Bifidobacterium O
longum O
infantis O
JCM O
1222 O
, O
ATCC O
15697Actino-bacteriaIV O
BLIJ_0470 O
Propionibacterium O
acnes O
TypeIA2 O
P.acn17Actino-bacteriaIV O
TIA2EST22_11370 O
†Cluster O
shows O
similarities O
to O
characterized O
RiPP O
cluster O
; O
# O
Cluster O
was O
previously O
detected O
by O
genome O
mining O
approaches O
. O
In O
S. O
thiolactonus O
, O
in-frame O
deletions O
were O
introduced O
into O
the O
cluster-associated O
stuH O
, O
a O
gene O
encoding O
a O
carboxylating O
enoyl-thioester O
reductase O
( O
ccr O
) O
( O
Fig. O
S8† O
) O
; O
and O
also O
into O
stuB O
, O
the O
gene O
encoding O
the O
iterative O
PKS-NRPS O
( O
Fig. O
S9† O
) O
. O
The O
resulting O
DNA O
fragment O
was O
sequenced O
, O
and O
the O
sequence O
deposited O
in O
the O
GenBank O
under O
accession O
number O
MH532527 B-bgc-accession
. O
[ O
Dactylosporangium O
sp. O
SC14051]45 O
% O
srcmLII O
acyl O
CoA O
ligase536SsfL2 O
The O
sxtA O
encodes O
a O
polyketide O
synthase O
in O
saxitoxin-producing O
cyanobacterium O
Anabaena O
circinalis O
. O
In O
addition O
to O
ergot O
alkaloids O
, O
Claviceps O
species O
can O
also O
produce O
a O
second O
class O
of O
neurotropic O
alkaloids O
, O
the O
indole-diterpenes O
( O
“ O
tremorgens O
” O
) O
, O
known O
to O
cause O
staggers O
in O
livestock O
[ O
2 O
] O
. O
The O
PKS O
AnaG O
supposedly O
adds O
an O
acetate O
unit O
without O
reduction O
and O
performs O
a O
methylation O
. O
In O
order O
to O
determine O
the O
exact O
boundary O
of O
the O
cluster O
, O
the O
genes O
on O
both O
ends O
of O
the O
cluster O
V O
( O
g3262–g3284 O
) O
were O
individually O
disrupted O
. O
A O
corresponding O
cluster O
of O
putative O
Lls O
homologs O
, O
all O
of O
which O
are O
predicted O
to O
encode O
biosynthetic O
enzymes O
, O
were O
also O
identified O
[ O
8 O
] O
; O
LlsB O
( O
99 O
% O
in O
the O
case O
of O
all O
three O
strains O
) O
, O
LlsY O
( O
95.4 O
% O
FH2051 O
, O
95 O
% O
SLCC6466 O
and O
SLCC6294 O
) O
and O
LlsD O
( O
98.4 O
% O
FH2051 O
, O
98 O
% O
SLCC6466 O
and O
SLCC6294 O
) O
. O
Protease O
activity O
has O
also O
been O
established O
for O
the O
N-terminal O
150 O
amino O
acids O
of O
BovTp O
, O
which O
removed O
the O
leader O
peptide O
from O
mBovA O
to O
generate O
the O
lantibiotic O
bovicin O
HJ50 O
( O
Figure O
21).350 O
Based O
on O
the O
sequence O
similarity O
to O
other O
AMS O
transporters O
and O
to O
papain-like O
proteases O
, O
the O
catalytic O
triad O
of O
the O
protease O
domain O
of O
LctTp O
was O
proposed O
to O
consist O
of O
Asp106 O
, O
His90 O
, O
and O
Cys12 O
. O
For O
instance O
, O
close O
to O
the O
upstream O
boundary O
reside O
genes O
acnA O
and O
acnB O
; O
all O
of O
these O
encode O
for O
hypothetical O
proteins O
. O
The O
pathway O
is O
composed O
of O
the O
following O
steps O
: O
( O
i O
) O
transfer O
of O
a O
glycerol O
moiety O
from O
d-1,3-biphosphoglycerate O
to O
a O
discrete O
acyl O
carrier O
protein O
( O
ACP O
) O
( O
e.g. O
, O
Tmn7a O
in O
tetronomycin O
biosynthesis O
[ O
24 O
] O
, O
a O
homologue O
of O
AbmA3 O
) O
as O
catalyzed O
by O
a O
glyceryl-S-ACP O
synthase O
( O
e.g. O
, O
RkE O
in O
RK-682 O
biosynthesis O
[ O
25 O
] O
, O
a O
homologue O
of O
AbmA2 O
) O
, O
leading O
to O
glyceryl-S-ACP O
; O
( O
ii O
) O
binding O
of O
the O
glyceryl-S-ACP O
to O
the O
nascent O
polyketide O
chain O
and O
detachment O
of O
the O
polyketide O
from O
the O
PKS O
, O
generating O
the O
linear O
hydroxymethyl O
tetronate O
ring O
as O
catalyzed O
by O
a O
ketoacyl-S-ACP O
synthase O
( O
e.g. O
, O
RkD O
in O
RK-682 O
biosynthesis O
[ O
26 O
] O
, O
a O
homologue O
of O
AbmA1 O
) O
; O
( O
iii O
) O
exomethylene O
installation O
via O
an O
acylation-elimination O
process O
accomplished O
by O
an O
acyltransferase O
E2 O
component O
of O
2-oxoacid O
dehydrogenase O
multienzymes O
( O
e.g. O
, O
Agg4 O
in O
agglomerin O
biosynthesis O
[ O
27 O
] O
and O
QmnD3 O
in O
quartromicin O
biosynthesis O
[ O
28 O
] O
, O
homologues O
of O
AbmA4 O
) O
and O
an O
α/β O
hydrolase O
fold O
protein O
( O
e.g. O
, O
Agg5 O
in O
agglomerin O
biosynthesis O
[ O
27 O
] O
and O
QmnD4 O
in O
quartromicin O
biosynthesis O
[ O
28 O
] O
, O
homologues O
of O
AbmA5 O
) O
. O
The O
sequence O
of O
the O
mersacidin O
gene O
cluster O
has O
the O
accession O
number O
AJ250862 B-bgc-accession
. O
This O
modification O
was O
first O
identified O
through O
structural O
elucidation O
of O
epidermin O
from O
S. O
epidermidis O
Tü3298,173 O
and O
subsequent O
heterologous O
expression O
of O
the O
epiD O
gene O
from O
the O
corresponding O
biosynthetic O
cluster O
produced O
a O
yellow O
flavoprotein O
that O
was O
presumed O
to O
function O
in O
AviCys O
formation.172 O
Reconstitution O
studies O
of O
EpiD O
, O
using O
either O
the O
precursor O
peptide O
EpiA283 O
or O
a O
synthetic O
peptide O
corresponding O
to O
the O
epidermin O
core,284 O
indicated O
a O
loss O
of O
46 O
Da O
from O
the O
substrate O
corresponding O
to O
the O
loss O
of O
CO2 O
and O
two O
H O
atoms O
. O
We O
tested O
the O
antimicrobial O
activity O
of O
37 O
bacteriocinogenic O
LAB O
, O
isolated O
from O
food O
and O
other O
sources O
, O
against O
clinical O
S. O
pneumoniae O
strains O
. O
By O
sequencing O
the O
O-AGC O
of O
non-reacting O
strains O
, O
we O
showed O
that O
the O
serogroups O
O1 O
and O
O2 O
are O
encoded O
by O
different O
sets O
of O
O-antigen O
encoding O
genes O
and O
identified O
potentially O
new O
serotypes O
. O
This O
study O
Lolium O
sp. O
( O
6x O
) O
– O
– O
TD O
nt O
NFL O
NFL O
FaTG-3 O
e4074 O
[ O
11 O
] O
Lolium O
sp. O
( O
6x O
) O
– O
– O
– O
nt O
NFL O
NFL O
NML O
NAL O
FaTG-4 O
e4305 O
PI O
598863 O
Lolium O
sp. O
( O
10x O
) O
ERV O
nt O
TD O
nt O
– O
– O
Neotyphodium O
aotearoae O
e899 O
= O
MYA-1229 O
[ O
27 O
] O
Echinopogon O
ovatus O
– O
nt O
TD O
nt O
NFL O
NFL O
N. O
chisosum O
e3609 O
= O
ATCC O
64037 O
[ O
28 O
] O
Achnatherum O
eminens O
– O
nt O
– O
nt O
NFL O
nt O
N. O
coenophialum O
e19 O
= O
ATCC O
90664 O
[ O
11 O
] O
Lolium O
arundinaceum O
ERV O
ERV O
CC O
– O
nt O
NFL O
NFL O
NML O
NAL O
NANL O
N. O
coenophialum O
e4163 O
PI O
422777 O
Lolium O
sp. O
( O
4x O
) O
ERV O
ERV O
TD O
nt O
NFL O
NFL O
NML O
NAL O
NANL O
N. O
coenophialum O
e4309 O
PI O
598903 O
Lolium O
arundinaceum O
– O
– O
TD O
nt O
NFL O
NANL O
N. O
funkii O
e4096 O
[ O
28 O
] O
Achnatherum O
robustum O
CC O
CC O
TD O
nt O
– O
– O
N. O
gansuense O
var O
. O
( O
a O
) O
The O
vlm O
gene O
cluster O
from O
S. O
tsusimaensis O
including O
two O
critical O
nonribosomal O
peptide O
synthetase O
( O
NRPS O
) O
genes O
( O
vlm1 O
and O
vlm2 O
) O
and O
five O
ORFs O
[ O
12 O
] O
, O
and O
the O
position O
of O
nine O
regions O
targeted O
by O
DNA O
amplification O
( O
amplicons O
A O
to O
I O
; O
also O
see O
Figure O
S1 O
) O
. O
Results O
Here O
, O
we O
present O
the O
complete O
genome O
sequence O
of O
Actinoplanes O
sp. O
SE50/110 O
[ O
GenBank O
: O
CP003170 B-bgc-accession
] O
, O
the O
first O
publicly O
available O
genome O
of O
the O
genus O
Actinoplanes O
, O
comprising O
various O
producers O
of O
pharmaceutically O
and O
economically O
important O
secondary O
metabolites O
. O
Thus O
, O
the O
partial O
deletion O
of O
lomo10 O
might O
not O
affect O
the O
expression O
of O
other O
genes O
, O
such O
as O
lomo11 O
. O
AscR O
possessed O
a O
Zn2Cys6 O
binuclear O
cluster O
for O
DNA O
binding O
and O
was O
presumably O
a O
transcription O
regulator O
. O
The O
order O
of O
the O
genes O
( O
anaA-anaG O
) O
in O
ana O
gene O
clusters O
from O
NIVA-CYA O
711 O
( O
Germany O
) O
and O
CAWBG02 O
( O
New O
Zealand O
) O
were O
identical O
to O
the O
three O
other O
C. O
issatschenkoi O
strains O
CHABD3 O
( O
China O
) O
, O
RM-6 O
and O
LBRI48 O
( O
Japan O
) O
[ O
14 O
] O
. O
Therefore O
, O
we O
expected O
that O
TESmlC O
domain O
, O
which O
recognizes O
the O
acyl O
group O
derived O
from O
polyketide O
and O
the O
hydroxyl O
group O
of O
threonine O
as O
a O
nucleophile O
, O
would O
accept O
the O
intermediate O
from O
the O
new O
construct O
and O
catalyze O
macrocyclization O
. O
Numerous O
functionalised O
strobilurin O
natural O
products O
are O
known6 O
in O
which O
the O
aromatic O
ring O
is O
hydroxylated O
( O
e.g. O
strobilurin O
F O
5)7 O
and O
chlorinated O
( O
e.g. O
strobilurin O
B O
6)1 O
and O
the O
hydroxyl O
groups O
can O
be O
, O
in O
turn O
, O
methylated O
or O
prenylated O
( O
e.g. O
strobilurin O
G O
7)7,8 O
. O
The O
antibacterial O
bioassay O
indicated O
that O
all O
the O
samples O
, O
with O
the O
exception O
for O
those O
of O
M1154::pCHW301 O
and O
M1154::pCHW301ΔminR O
, O
lack O
bioactivities O
against O
the O
Bacillus O
subtilis O
indicator O
strain O
( O
Figure O
O O
2B O
) O
orf29 O
, O
which O
is O
located O
at O
another O
end O
of O
the O
cluster O
, O
may O
also O
be O
involved O
in O
the O
self-resistance O
by O
transporting O
the O
drug O
[ O
336 O
] O
. O
This O
proves O
that O
gene O
cluster O
no. O
9 O
, O
designated O
alp-cluster O
( O
Table O
2 O
) O
, O
is O
indeed O
responsible O
for O
the O
biosynthesis O
of O
alpiniamides O
. O
Salivaricin O
G32 O
, O
a O
Homolog O
of O
the O
Prototype O
Streptococcus O
pyogenes O
Nisin-Like O
Lantibiotic O
SA-FF22 O
, O
Produced O
by O
the O
Commensal O
Species O
Streptococcus O
salivarius O
Salivaricin O
G32 O
, O
a O
2667 O
O O
Da O
novel O
member O
of O
the O
SA-FF22 O
cluster O
of O
lantibiotics O
, O
has O
been O
purified O
and O
characterized O
from O
Streptococcus O
salivarius O
strain O
G32 O
The O
HPLC O
analysis O
of O
extract O
from O
wild O
strain O
showed O
the O
typical O
peak O
for O
bafilomycin O
B1 O
but O
no O
peak O
for O
bafilomycin O
A1 O
. O
This O
pronounced O
analogy O
suggested O
that O
a O
non-ribosomal O
peptide O
is O
the O
likely O
product O
of O
the O
xtl-encoded O
NRPSs O
. O
The O
fifth O
gene O
, O
wzt O
, O
encodes O
a O
predicted O
436 O
amino O
acid O
long O
protein O
. O
Detection O
of O
Phenazines O
in O
the O
phzE O
Positive O
Strains O
To O
demonstrate O
the O
synthesis O
of O
phenazines O
in O
all O
phzE O
positive O
strains O
, O
cultures O
of O
these O
strains O
were O
extracted O
and O
analyzed O
by O
HPLC-UV/MS O
analyses O
. O
The O
pattern O
of O
gene O
differences O
between O
serotypes O
being O
grouped O
in O
the O
middle O
of O
the O
gene O
cluster O
has O
also O
been O
observed O
in O
polysaccharide O
gene O
clusters O
of O
other O
species O
such O
as O
Acinetobacter O
baumannii O
( O
Hu O
et O
O O
al. O
2013 O
Enzyme O
analyses O
and O
metabolite O
extractions O
from O
two O
hapalindole-producing O
Fischerella O
strains O
indicate O
the O
presence O
of O
cis O
and O
trans O
indole-isonitriles O
as O
biosynthetic O
intermediates O
in O
the O
early O
steps O
of O
the O
pathway O
. O
Gene O
Size O
( O
bp/aa O
) O
Proposed O
Function O
Orthologue O
identified O
by O
BLASTP O
search O
Identity/Similarity O
[ O
% O
] O
orf1 O
1638/545 O
ATPase O
SZN_31494 O
, O
Streptomyces O
zinciresistens O
85/89 O
mpz1 O
486/161 O
Phenazine O
biosynthesis O
protein O
PhzB O
, O
Pseudomonas O
fluorescens O
69/81 O
mpz2 O
1224/407 O
3-Deoxy-D-arabino-heptulosonate O
7-phosphate O
synthase O
PhzC O
, O
Pseudomonas O
fluorescens O
49/61 O
mpz3 O
573/190 O
2,3-Dihydro-3-hydroxy-anthranilate O
synthase O
PhzD O
, O
Pseudomonas O
fluorescens O
56/73 O
mpz4 O
1941/646 O
2-Amino-2-desoxy-isochorismate O
synthase O
PhzE O
, O
Pseudomonas O
fluorescens O
54/69 O
mpz5 O
1167/388 O
trans-2,3-Dihydro-3-hydroxyanthranilate O
isomerase O
PhzF O
, O
Pseudomonas O
fluorescens O
60/70 O
mpz6 O
636/211 O
FMN-dependent O
oxidase O
PhzG O
, O
Pseudomonas O
fluorescens O
48/65 O
mpz7 O
1623/540 O
Monooxygenase O
ChnB O
, O
Brachymonas O
petroleovorans O
56/74 O
mpz8 O
330/109 O
Monooxygenase O
TcmH O
, O
Streptomyces O
glaucescens O
48/60 O
mpz9 O
1215/404 O
Flavin O
dependent O
hydroxylase O
PhzS O
, O
Pseudomonas O
aeruginosa O
51/62 O
mpz10 O
996/331 O
Prenyltransferase O
O3I_007965 O
, O
Nocardia O
brasiliensis O
ATCC O
700358 O
33/51 O
mpz11 O
1020/339 O
Mevalonate O
kinase O
MK O
, O
Streptomyces O
cinnamonensis O
57/71 O
mpz12 O
1044/347 O
Mevalonate O
diphosphate O
decarboxylase O
Mcl8 O
, O
Streptomyces O
sp. O
CNH189 O
73/80 O
mpz13 O
1140/379 O
Phosphomevalonate O
kinase O
PMK O
, O
Streptomyces O
sp. O
KO-3988 O
57/70 O
mpz14 O
1092/363 O
Isopentenyl O
diphosphate O
isomerase O
Mcl6 O
, O
Streptomyces O
sp. O
CNH189 O
74/86 O
mpz15 O
1068/355 O
3-Hydroxy-3-methylglutaryl O
CoA O
reductase O
HMGR O
, O
Streptomyces O
anulatus O
80/89 O
mpz16 O
1185/394 O
3-Hydroxy-3-methylglutaryl O
CoA O
synthase O
Mcl4 O
, O
Streptomyces O
sp. O
CNH189 O
76/87 O
orf18 O
1212/403 O
integrase O
catalytic O
subunit O
OCO_06920 O
, O
Mycobacterium O
intracellulare O
MOTT-02 O
48/63 O
The O
six O
genes O
mpz11 O
- O
16 O
show O
obvious O
similarity O
( O
89 O
- O
70 O
% O
) O
to O
genes O
coding O
for O
enzymes O
of O
the O
mevalonate O
pathway O
, O
corresponding O
to O
the O
fact O
that O
the O
isoprenoid O
moieties O
of O
JBIR-46 O
, O
-47 O
, O
and O
-48 O
originate O
from O
the O
mevalonate O
pathway O
[ O
14 O
] O
. O
Two O
members O
of O
the O
mmpL O
family O
, O
a O
group O
of O
genes O
encoding O
large O
membrane O
proteins O
, O
are O
also O
required O
for O
GPL O
biosynthesis O
[ O
19,26 O
] O
. O
In O
general O
, O
the O
four O
tested O
recombinant O
A O
domains O
were O
found O
to O
activate O
selectively O
predicted O
amino O
acids O
, O
experimentally O
confirming O
the O
speculation O
that O
the O
plp O
gene O
cluster O
involved O
in O
pelgipeptin O
biosynthesis O
. O
Anti-SMASH O
software13 O
identified O
two O
potential O
PKS-encoding O
BGCs O
in O
each O
genome O
( O
Supplementary O
Figure O
O O
6 O
) O
Viomycin O
and O
capreomycin O
are O
tuberactinomycin O
group O
antibiotics O
used O
for O
the O
treatment O
of O
multi-resistant O
tuberculosis O
. O
Examination O
of O
the O
resultant O
strain O
revealed O
that O
the O
L. O
innocua O
LIPI-3 O
is O
indeed O
functional O
as O
evidenced O
by O
a O
clear O
haemolytic O
phenotype O
on O
Columbia O
blood O
agar O
( O
Figure O
O O
3 O
) O
Holomycin O
is O
also O
produced O
by O
Streptomyces O
clavuligerus O
[ O
526,527 O
] O
. O
Distribution O
of O
suicin O
90 O
- O
1330 O
gene O
cluster O
among O
S. O
suis O
serotype O
2 O
strains O
of O
ST25 O
and O
ST28 O
. O
( O
A O
) O
Antifungal O
activity O
of O
metabolites O
against O
Rhizoctonia O
solani O
AG-1 O
( O
KACC O
40111 O
) O
. O
However O
, O
the O
genome O
of O
S. O
sp. O
FXJ1.235 O
contained O
only O
one O
copy O
of O
the O
two O
genes O
, O
myeC O
and O
myeQ O
, O
respectively O
. O
On O
the O
other O
hand O
, O
diacetylated O
compound O
27 O
revealed O
the O
lowest O
antimicrobial O
activity O
against O
Streptococcus O
spp O
. O
Remarkably O
, O
both O
programs O
independently O
predicted O
the O
same O
gene O
order O
: O
pks1E-C-B-A-D. O
Just O
15 O
kb O
downstream O
of O
cACPL_2 O
, O
a O
second O
gene O
cluster O
( O
cACPL_3 O
) O
containing O
a O
long O
PKS O
gene O
with O
various O
accessory O
protein O
coding O
sequences O
could O
be O
identified O
( O
Figure O
9C O
) O
. O
These O
genes O
appear O
to O
be O
transcribed O
from O
a O
single O
bidirectional O
promoter O
located O
between O
congA O
and O
congC. O
Tellingly O
, O
congA O
, O
congE O
, O
and O
congB O
are O
arranged O
together O
in O
exactly O
the O
same O
way O
as O
their O
counterparts O
ozmO O
, O
ozmP O
, O
and O
ozmQ O
in O
the O
oxazolomycin O
gene O
cluster O
. O
Genes O
involved O
in O
the O
polyketide O
assembly O
Ten O
PKS O
modules O
were O
identified O
in O
the O
ptx O
gene O
cluster O
, O
encoded O
by O
ptxB O
, O
ptxC O
, O
ptxF O
, O
and O
ptxH. O
PtxC O
and O
PtxF O
closely O
resembled O
OzmQ O
( O
67 O
% O
identity O
) O
and O
OzmN O
( O
51 O
% O
identity O
) O
, O
respectively O
. O
Characterization O
of O
Leucocin O
B-KM432Bz O
from O
Leuconostoc O
pseudomesenteroides O
Isolated O
from O
Boza O
, O
and O
Comparison O
of O
its O
Efficiency O
to O
Pediocin O
PA-1 O
A O
bacteriocin-producing O
bacterium O
was O
isolated O
from O
boza O
and O
identified O
as O
Leuconostoc O
pseudomesenteroides O
KM432Bz O
. O
Genome O
mining O
reveals O
short O
NRPS O
genes O
in O
the O
genome O
of O
strains O
GPE O
PC73 O
and O
XaS3 O
Two O
short O
NRPS O
genes O
are O
also O
present O
on O
the O
chromosome O
of O
strain O
GPE O
PC73 O
in O
two O
additional O
loci O
. O
The O
use O
of O
negatively O
charged O
glutamyl-tRNAGlu O
as O
a O
cosubstrate O
may O
explain O
the O
observation O
that O
Ser/Thr O
residues O
flanked O
by O
hydrophobic O
residues O
are O
better O
substrates O
for O
dehydration O
than O
those O
flanked O
by O
polar O
and O
especially O
negatively O
charged O
residues.74,79 O
Although O
NisB O
could O
utilize O
the O
E. O
coli O
glutamyl-tRNAGlu O
as O
a O
source O
of O
activated O
Glu O
, O
the O
LanB O
from O
the O
NAI-107 O
producing O
organism O
Microbispora O
sp. O
107891 O
, O
MibB O
, O
could O
not O
do O
so O
efficiently.196 O
Reconstitution O
of O
activity O
for O
MibB O
required O
the O
addition O
of O
the O
charged O
cognate O
CUC O
anticodon O
tRNAGlu O
from O
the O
producing O
organism.196 O
A O
comparison O
of O
the O
nucleotide O
sequence O
of O
Microbispora O
sp. O
107891 O
tRNAGlu O
with O
that O
of O
E. O
coli O
tRNAGlu O
revealed O
differences O
in O
the O
acceptor O
stem O
. O
Nogalamycin O
is O
an O
anthracycline O
group O
antibiotic O
produced O
by O
S. O
nogalater O
. O
Analysis O
of O
the O
reverse O
transcription O
of O
phtL O
, O
the O
intergenic O
region O
of O
phtMN O
and O
amtA O
, O
confirmed O
that O
expression O
of O
these O
genes O
in O
enhanced O
by O
components O
present O
in O
leaf O
extracts O
. O
Results O
Identification O
of O
the O
1 O
BGC O
The O
genome O
of O
P. O
fluorescens O
ATCC O
39502 O
was O
sequenced O
at O
the O
Earlham O
Institute O
( O
Norwich O
, O
UK O
) O
using O
the O
Pacific O
Biosciences O
( O
PacBio O
) O
RSII O
platform O
, O
and O
assembly O
using O
the O
HGAP2 O
pipeline O
gave O
a O
single O
circular O
contig O
of O
∼6.15 O
O O
Mb O
These O
genes O
were O
tandemly O
arranged O
in O
the O
cluster O
from O
PC-07 O
to O
PC-13 O
and O
PC-18 O
to O
PC-19 O
, O
interrupted O
by O
genes O
PC-14 O
to O
PC-17 O
. O
Polyketide O
synthase O
domains O
are O
as O
follows O
KS O
ketosynthase O
, O
AT O
acyltransferase O
, O
KR O
ketoreductase O
, O
DH O
dehydratase O
, O
ACP O
acyl-carrier-protein O
, O
CAL O
CoA O
ligase O
, O
KSIII O
3-oxoacyl-ACP O
synthase O
III O
Pathway O
regulation O
Four O
ORFs O
( O
gonMR O
, O
gonL1 O
, O
gonL2 O
and O
gonL3 O
) O
could O
be O
responsible O
for O
PM100117/18 O
pathway O
regulation O
as O
they O
code O
for O
proteins O
with O
high O
sequence O
resemblance O
to O
transcription O
regulatory O
proteins O
. O
Biosynthesis O
of O
ergot O
alkaloids O
goes O
via O
the O
common O
intermediate O
chanoclavine-I O
, O
and O
studies O
of O
the O
key O
enzymes O
, O
EasE O
and O
EasC O
, O
involved O
in O
chanoclavine-I O
formation O
, O
have O
relied O
on O
gene O
complementation O
in O
fungi O
, O
whereas O
further O
characterization O
has O
been O
hampered O
by O
difficulties O
of O
poor O
EasE O
protein O
expression O
. O
The O
patE O
gene O
encodes O
a O
patellamide O
A O
and O
C O
precursor O
peptide O
of O
71 O
amino O
acid O
residues O
, O
the O
first O
37 O
of O
which O
serve O
as O
a O
leader O
sequence O
for O
processing O
. O
Hyarulomycin-biosynthetic O
genes O
are O
indicated O
with O
orf O
numbers O
as O
shown O
in O
Table O
5Table O
5Putative O
hyaluromycin O
biosynthetic O
gene O
cluster O
and O
the O
neighboring O
genesOrf1-Size O
(aa)Proposed O
functionClosest O
homologHomolog O
( O
I/S O
, O
% O
) O
inDescription O
, O
Origin O
, O
Accession O
numberI/Sb O
(%)grh O
clusterrub O
cluster769230cyclasehypothetical O
protein O
, O
Streptomyces O
fulvoviolaceus O
, O
WP_05242508254/63–RubK O
(53/63)768a656ABC O
transporter O
ATP-binding O
proteinmultidrug O
ABC O
transporter O
ATP-binding O
protein O
, O
Actinopolymorpha O
alba O
, O
WP_02057673170/83––767a577multidrug O
ABC O
transporter O
ATPasemultidrug O
ABC O
transporter O
ATPase O
, O
Streptomyces O
varsoviensis O
, O
WP_03088138569/81––766a117MarR O
family O
transcriptional O
regulatorMarR O
family O
transcriptional O
regulator O
, O
Actinomadura O
macra O
, O
WP_06746891145/63––765a72unknownhypothetical O
protein O
, O
Streptomyces O
aurantiacus O
, O
WP_055507532.56/60––764a498transcriptional O
regulatorhypothetical O
protein O
, O
Streptomyces O
sp. O
NRRL O
WC-3742 O
, O
WP_05183632055/63GrhR2 O
(34/48)763a533amide O
synthetasehypothetical O
protein O
, O
partial O
, O
Streptomyces O
sp. O
NRRL O
WC-3742 O
, O
WP_07891086060/70––762a4055-aminolevulinate O
synthaseAsuD2 O
, O
Streptomyces O
nodosus O
subsp O
. O
These O
results O
confirmed O
that O
MyeD O
and O
MyeG O
were O
essential O
for O
mycemycin O
biosynthesis O
and O
MyeP O
was O
responsible O
for O
the O
post-halogenation O
of O
mycemycin O
in O
S. O
sp. O
FXJ1.235 O
. O
Lantibiotic O
gene O
clusters O
identified O
in O
firmicutes O
Identification O
of O
novel O
Bacillus O
cereus O
associated O
lantibiotic O
clusters O
Bacillus O
species O
are O
rod-shaped O
, O
endospore-forming O
aerobic O
or O
facultatively O
anaerobic O
, O
Gram-positive O
bacteria O
that O
are O
ubiquitous O
in O
nature O
. O
Elucidation O
of O
Final O
Steps O
of O
the O
Marineosins O
Biosynthetic O
Pathway O
through O
Identification O
and O
Characterization O
of O
the O
Corresponding O
Gene O
Cluster O
O O
The O
marine O
Streptomyces O
sp. O
CNQ-617 O
produces O
two O
diastereomers O
, O
marineosins O
A O
and O
B. O
These O
are O
structurally O
related O
to O
alkyl O
prodiginines O
, O
but O
with O
a O
more O
complex O
cyclization O
and O
an O
unusual O
spiroaminal O
skeleton O
Tetrodotoxin O
is O
known O
to O
be O
biosynthesized O
by O
various O
bacteria O
, O
including O
actinobacteria O
, O
bacteroides O
, O
firmicutes O
, O
and O
proteobacteria O
[ O
140,141 O
] O
. O
This O
analysis O
successfully O
led O
to O
the O
identification O
of O
the O
brominated O
marine O
pyrroles/phenols O
( O
bmp O
) O
biosynthetic O
gene O
locus O
in O
both O
bacteria O
. O
The O
three O
genes O
( O
obaDEF O
) O
appear O
sufficient O
to O
encode O
for O
the O
production O
of O
4 O
, O
the O
biosynthesis O
of O
which O
is O
well O
understood O
from O
previous O
genetic O
studies O
on O
chloramphenicol27 O
and O
pristinamycin28 O
biosynthesis O
. O
Anthracimycin O
BII-2619 O
( O
2 O
) O
was O
purified O
as O
a O
white O
powder O
and O
was O
found O
to O
have O
the O
same O
molecular O
formula O
C25H32O4 O
and O
UV O
as O
anthracimycin O
( O
1 O
) O
. O
LC-MS O
measurements O
confirmed O
the O
presence O
of O
neosaxitoxin O
( O
3695 O
μg O
g-1 O
DW O
) O
, O
saxitoxin O
( O
3064 O
μg O
g-1 O
DW O
) O
, O
and O
GTX5 O
( O
567 O
μg O
g-1 O
DW O
) O
. O
p O
O O
< O
O O
0.01 O
, O
* O
p O
O O
< O
O O
0.05 O
During O
the O
fermentation O
anaphase O
( O
after O
the O
6th O
day O
) O
, O
the O
expression O
levels O
of O
MpFasA2 O
, O
MpFasB2 O
, O
MpPKS5 O
, O
mppD O
, O
mmpB O
, O
and O
mppR1 O
were O
significantly O
up-regulated O
( O
p O
O O
< O
O O
0.01 O
The O
precursor O
peptide O
D187_01267 O
from O
C. O
fuscus O
DSM O
2262 O
has O
eight O
cysteine O
residues O
, O
the O
highest O
among O
all O
the O
identified O
precursor O
peptides O
. O
Orf O
5 O
, O
which O
is O
located O
5 O
prime O
to O
sxtM1 O
, O
and O
contains O
a O
short O
truncated O
sequence O
which O
is O
highly O
similar O
to O
sxtH O
, O
a O
hydroxylase O
putatively O
involved O
in O
the O
hydroxylation O
of O
C-12 O
of O
saxitoxin O
. O
The O
orf8 O
gene O
remnant O
— O
along O
with O
another O
expression-correlated O
orf O
encoding O
a O
putative O
nonribosomal O
peptide O
synthetase O
— O
were O
utilized O
as O
probes O
to O
isolate O
four O
contiguous O
cosmids O
from O
the O
genomic O
DNA O
of O
the O
producing O
strain O
of O
A-503083s O
. O
The O
P. O
janthinellum O
wild O
type O
strain O
produced O
13-desoxypaxilline O
and O
prenyl-elaborated O
indole-diterpenes O
of O
higher O
mass O
, O
m/z+ O
584 O
( O
attributable O
to O
the O
janthitremanes O
shearinine O
A O
or O
F O
) O
and O
m/z O
+ O
570 O
( O
attributable O
to O
aflatremane O
diprenyl-paspalinines O
such O
as O
shearinine O
K O
or O
its O
isomers O
) O
[ O
24,29,30 O
] O
. O
Serotype O
Source O
, O
origin O
References O
Stx O
Nos O
of O
strains O
wzxO2 O
wzxO2 O
- O
2 O
wzxO2 O
- O
3 O
neuBK1 O
O2:K1:H6 O
Infant O
feces O
, O
Germany O
Wullenweber O
et O
al. O
, O
1993 O
; O
Bettelheim O
et O
al. O
, O
2003 O
− O
1 O
+ O
− O
− O
+ O
O2:K1:H7 O
Infant O
feces O
, O
Germany O
Wullenweber O
et O
al. O
, O
1993 O
; O
Bettelheim O
et O
al. O
, O
2003 O
− O
1 O
+ O
− O
− O
+ O
O2 O
: O
H1 O
Calf O
feces O
, O
Germany O
This O
work O
, O
2010 O
− O
1 O
+ O
− O
− O
− O
O2:K1:H4 O
Infant O
feces O
, O
Germany O
Wullenweber O
et O
al. O
, O
1993 O
; O
Bettelheim O
et O
al. O
, O
2003 O
− O
1 O
+ O
− O
− O
+ O
O2:K5:H4 O
Infant O
feces O
, O
Germany O
Wullenweber O
et O
al. O
, O
1993 O
; O
Bettelheim O
et O
al. O
, O
2003 O
− O
2 O
+ O
− O
− O
− O
O2:H25 O
Ribosomally O
Synthesized O
and O
Post-Translationally O
Modified O
Peptides O
( O
RiPPs O
) O
Lanthipeptides O
are O
members O
of O
the O
rapidly O
expanding O
RiPP O
family O
of O
natural O
products O
. O
No O
RT-PCR O
amplicons O
were O
detected O
at O
sub-region O
IIf O
( O
PT8 O
) O
( O
orf25 O
and O
orf26 O
) O
and O
region O
III O
( O
PT9 O
) O
( O
orf27-orf28 O
) O
. O
In O
order O
to O
investigate O
this O
, O
genB O
gene O
encoding O
a O
putative O
lantibiotic O
dehydratase O
( O
Table O
2 O
) O
was O
inactivated O
via O
insertion O
of O
the O
pC1_KN O
vector O
into O
its O
coding O
region O
, O
yielding O
recombinant O
strain O
YIM O
130001/KN O
. O
Among O
them O
, O
the O
1617 O
bp O
open O
reading O
frame O
mcyH O
encodes O
a O
putative O
37,000 O
Da O
transmembrane O
protein O
, O
belonging O
to O
the O
ABC O
transporter O
. O
In O
the O
second O
cluster O
, O
there O
were O
six O
putative O
precursor O
peptides O
( O
IIE_05066 O
, O
67 O
, O
68 O
, O
69 O
, O
70 O
and O
71 O
) O
with O
almost O
identical O
leader O
sequences O
( O
74–97 O
% O
identity O
) O
, O
a O
LanM O
( O
IIE_05073 O
, O
24 O
% O
identical O
to O
HalM O
) O
, O
a O
LanT O
( O
IIE_05074 O
) O
and O
a O
LanP O
( O
IIE_05075 O
) O
determinant O
. O
Genes O
encoding O
Gassericin O
E O
( O
gaeA O
) O
, O
the O
putative O
complement O
peptide O
GaeX O
( O
gaeX O
) O
and O
their O
putative O
immunity O
protein O
( O
gaeI O
) O
, O
could O
form O
an O
transcriptional O
unit O
, O
driven O
by O
two O
putative O
alternative O
promoters O
( O
P3a O
and O
P3b O
) O
. O
A O
general O
hypothesis O
is O
that O
a O
symbiotic O
or O
commensal O
bacterium O
living O
within O
these O
organisms O
is O
responsible O
for O
tetrodotoxin O
production O
. O
Purple O
arrow O
: O
daT O
gene O
predicted O
to O
be O
required O
for O
biosynthesis O
of O
Dab O
( O
2,4-diamino O
butyric O
acid O
) O
. O
hydrophila O
ATCC O
7966 O
92 O
YP_857396 B-bgc-accession
ORF14 O
16303 O
.. O
17259 O
UDP-glucose O
4-epimerase O
galE O
Aeromonas O
hydrophila O
subsp O
. O
The O
5′-end O
of O
the O
cluster O
is O
similar O
to O
the O
other O
O1 O
strains O
, O
containing O
the O
rmlBDAC O
gene O
cluster O
followed O
by O
the O
wzx O
gene O
, O
the O
mnaA O
gene O
( O
encoding O
a O
UDP-N-acetylglucosamine O
2-epimerase O
) O
and O
a O
glycosyl O
transferase O
. O
Lasso O
peptides O
are O
an O
emerging O
family O
of O
ribosomally O
synthesized O
and O
post-translationally O
modified O
peptides O
( O
RiPPs O
) O
produced O
by O
bacteria5 O
. O
Two O
transporter O
resistance O
genes O
, O
snbR O
and O
ptr O
, O
were O
identified O
, O
one O
within O
the O
cluster O
and O
another O
outside O
of O
the O
cluster O
[ O
136 O
] O
. O
Analysis O
of O
promoters O
within O
the O
type O
F7 O
toxin O
gene O
cluster O
Because O
the O
regulatory O
botR O
gene O
is O
not O
present O
in O
the O
botulinum O
toxin O
gene O
clusters O
of O
nonproteolytic O
neurotoxigenic O
clostridia O
( O
Fig. O
1 O
) O
, O
we O
characterized O
the O
promoter O
sequences O
of O
their O
polycistronic O
p47-ntnh-bont O
and O
orfX1-orfX2-orfX3 O
transcripts O
( O
Pp47 O
and O
PorfX1 O
respectively O
) O
to O
search O
for O
promoter O
sequences O
that O
might O
be O
recognized O
by O
a O
presently O
unknown O
regulatory O
protein(s O
) O
. O
Results O
and O
discussion O
Genome O
sequencing O
of O
M. O
O O
echinospora O
CCTCC O
M O
2018898 O
M. O
O O
echinospora O
CCTCC O
M O
2018898 O
( O
also O
known O
as O
M. O
O O
echinospora O
HS-1520 O
- O
016 O
- O
89 O
) O
is O
an O
industrial O
gentamicin O
B O
producing O
strain O
( O
486 O
O O
mg/L O
) O
generated O
by O
Hisun O
Pharmaceutical O
Co. O
Ltd O
through O
conventional O
This O
new O
SM O
has O
structural O
similarities O
to O
the O
known O
histone O
deacetylase O
inhibitor O
apicidin O
. O
The O
biosynthetic O
gene O
cluster O
of O
zearalenone O
was O
cloned O
from O
Fusarium O
graminearum O
as O
a O
50 O
kb O
DNA O
fragment O
[ O
328,329,330 O
] O
. O
Moreover O
, O
the O
transcriptome O
dataset O
of O
S. O
officinalis O
presented O
other O
genes O
, O
such O
as O
SoGPS O
, O
SoFPS2 O
, O
and O
SoGGPSΙΙ10 O
, O
which O
are O
the O
immediate O
precursor O
of O
the O
mono- O
, O
sesqui- O
, O
and O
di-terpene O
biosynthesis O
pathway O
. O
Biosynthetic O
and O
Synthetic O
Strategies O
for O
Assembling O
Capuramycin-Type O
Antituberculosis O
Antibiotics O
Mycobacterium O
tuberculosis O
( O
Mtb O
) O
has O
recently O
surpassed O
HIV/AIDS O
as O
the O
leading O
cause O
of O
death O
by O
a O
single O
infectious O
agent O
. O
RESULTS O
Streptomyces O
lunaelactis O
produces O
ferroverdins O
and O
bagremycins O
. O
Notably O
, O
minC O
encodes O
a O
613-amino O
acid O
protein O
containing O
two O
domains O
, O
an O
N-terminal O
HAD O
phosphatase O
domain O
and O
the O
C-terminal O
DUF4243 O
domain O
with O
unassigned O
function O
. O
Except O
for O
cylindrocyclophane O
A O
( O
25 O
) O
, O
non-carbamoylated O
or O
diacetylated O
[7.7]paracyclophanes O
( O
e.g. O
, O
cylindrocyclophane O
A1 O
( O
21 O
) O
and O
D O
( O
27 O
) O
) O
tended O
to O
be O
slightly O
less O
potent O
against O
MRSA O
, O
especially O
against O
strains O
N315 O
and O
Mu50 O
( O
MICs O
in O
the O
range O
0.8‒12.9 O
µM O
) O
than O
the O
other O
derivatives O
, O
as O
it O
has O
been O
reported O
previously O
for O
MRSA O
strain O
1 O
[ O
7 O
] O
. O
This O
gene O
was O
under O
the O
control O
of O
the O
native O
promoter O
( O
500 O
bp O
upstream O
region O
of O
the O
SOD_c20780 O
, O
which O
belonged O
to O
a O
cluster O
of O
four O
genes O
which O
were O
further O
analyzed O
in O
Domik O
et O
al. O
, O
2016 O
) O
and O
the O
sodorifen O
emission O
was O
restored O
( O
Figure O
4C O
) O
. O
N- O
and O
C-terminal O
sequence O
analysis O
of O
the O
two O
cluster O
types O
revealed O
the O
gene O
orders O
nrps2B-C-A O
and O
pks3A-B-C O
as O
most O
likely O
. O
In O
Actinoplanes O
sp. O
SE50/110 O
, O
one O
NRPS O
( O
cACPL_1 O
) O
, O
two O
PKS O
( O
cACPL_2 O
& O
cACPL_3 O
) O
and O
a O
hybrid O
NRPS/PKS O
cluster O
( O
cACPL_4 O
) O
were O
found O
by O
gene O
annotation O
and O
subsequent O
detailed O
analysis O
using O
the O
antiSMASH O
pipeline O
[ O
84 O
] O
. O
Figure O
1Conservation O
of O
2x O
type O
III O
pks O
genomic O
cluster O
and O
phylogenetic O
analysis O
of O
M. O
marinum O
( O
Mmar O
) O
type O
III O
PKSs O
. O
A O
cytolysin O
immunity O
protein O
( O
CylI O
; O
BCSJ1_09298 O
) O
was O
also O
found O
to O
be O
present O
in O
the O
cluster O
. O
Biosynthesis O
of O
the O
other O
condensing O
partner O
, O
4-ethylidene-L-proline O
, O
is O
presumably O
encoded O
by O
a O
set O
of O
five O
genes O
, O
lim10 O
– O
lim14 O
( O
Fig. O
O O
3c O
) O
, O
which O
are O
homologous O
to O
the O
genes O
of O
the O
APD O
sub-cluster O
encoding O
biosynthesis O
of O
APD O
precursors O
in O
other O
PBDs O
, O
lincomycin O
, O
and O
hormaomycin O
The O
starter O
and O
the O
module O
1 O
uptake O
3-FSA O
and O
L-threonine O
, O
respectively O
, O
common O
to O
all O
pathways O
, O
but O
the O
module O
2 O
uptake O
pyruvate O
( O
AntC O
) O
, O
isoleucic O
acid O
( O
SmlB O
) O
, O
and O
valic O
acid O
( O
NatB O
) O
, O
respectively O
. O
To O
elucidate O
the O
biosynthetic O
machinery O
associated O
with O
TTN O
production O
, O
the O
ttn O
biosynthetic O
gene O
cluster O
from O
S. O
griseochromogenes O
was O
isolated O
and O
characterized O
, O
and O
its O
involvement O
in O
TTN O
biosynthesis O
confirmed O
by O
gene O
inactivation O
and O
complementation O
experiments O
. O
The O
function O
of O
only O
one O
GT O
, O
WbyM O
, O
has O
been O
experimentally O
confirmed O
( O
Kondakova O
et O
O O
al. O
2012 O
) O
, O
though O
the O
linkage O
specificities O
of O
all O
GTs O
have O
been O
predicted O
( O
Table O
O O
2 O
Identification O
and O
Characterization O
of O
Mycemycin O
Biosynthetic O
Gene O
Clusters O
in O
Streptomyces O
olivaceus O
FXJ8.012 O
and O
Streptomyces O
sp. O
FXJ1.235 O
Mycemycins O
A O
– O
E O
are O
new O
members O
of O
the O
dibenzoxazepinone O
( O
DBP O
) O
family O
, O
derived O
from O
the O
gntR O
gene-disrupted O
deep O
sea O
strain O
Streptomyces O
olivaceus O
FXJ8.012Δ1741 O
and O
the O
soil O
strain O
Streptomyces O
sp. O
FXJ1.235 O
. O
A O
total O
of O
thirteen O
genes O
( O
txnB1–txnB12 O
and O
txnM1 O
) O
in O
the O
txn O
gene O
cluster O
encoding O
enzymes O
are O
consistent O
with O
the O
biosynthesis O
of O
two O
sugar O
moieties O
and O
subsequently O
attachment O
to O
the O
aglycon O
( O
Fig. O
3C O
and O
B O
) O
. O
We O
then O
commissioned O
a O
synthetic O
operon O
containing O
the O
regions O
harboring O
kyaN O
to O
kyaH O
plus O
the O
upstream O
promoter O
region O
of O
kyaN O
as O
an O
EcoRI/XbaI O
fragment O
( O
Fig. O
S2B O
) O
. O
2.7.1.1300605.7833.27 O
SoFOLK3 O
K15892 O
SO|comp825225_c0 O
2.7.1.20525.34 O
SoFOLK4 O
K15892 O
SO|comp22857_c0 O
2.7.1.2732721.03 O
SoPCYOX1 O
K05906 O
SO|comp17568_c0 O
1.8.3.5 O
, O
O O
1.8.3.6227571721.78 O
SoSTE24 O
- O
K06013 O
SO|comp520699_c0 O
3.4.24.8432641.88 O
SoSTE24 O
- O
2 O
K06013 O
SO|comp8969_c0 O
3.4.24.841628659.7927.93 O
SoCHLP1 O
K10960 O
SO|comp12058_c0 O
1.3.1.831475924.49 O
EEQ86297 B-bgc-accession
PJ-14 O
( O
janQ O
) O
9 O
469 O
Cytochrome O
P450 O
monooxygenase O
P. O
paxilli O
0.0 O
AAK11527 B-bgc-accession
PJ-15 O
( O
janD O
) O
2 O
438 O
Aromatic O
prenyl O
transferase O
P. O
paxilli O
0.0 O
AAK11526 B-bgc-accession
PJ-16 O
( O
janO O
) O
4 O
448 O
FAD-binding O
oxidoreductase O
P. O
paxilli O
0.0 O
ADO29935 B-bgc-accession
PJ-17 O
4 O
283 O
Conserved O
hypothetical O
Talaromyces O
marneffei O
6e−32 O
XP_002147239 B-bgc-accession
PJ-18 O
2 O
348 O
Alcohol O
dehydrogenase O
A. O
terreus O
0.0 O
XP_001212944 B-bgc-accession
PJ-19 O
2 O
272 O
FRG1-like O
family O
protein O
P. O
oxalicum O
0.0 O
EPS27959 B-bgc-accession
PJ-20 O
3 O
720 O
Conserved O
hypothetical O
P. O
oxalicum O
0.0 O
EPS27958 B-bgc-accession
PJ-21 O
2 O
514 O
Glucoronyl O
hydrolase O
P. O
oxalicum O
0.0 O
EPS27957 B-bgc-accession
PJ-22 O
7 O
801 O
Transcriptional O
regulator O
P. O
oxalicum O
0.0 O
EPS27956 B-bgc-accession
Proposed O
janthitremane O
biosynthetic O
genes O
are O
shown O
in O
bold O
type O
. O
Mining O
of O
the O
Pyrrolamide O
Antibiotics O
Analogs O
in O
Streptomyces O
netropsis O
Reveals O
the O
Amidohydrolase-Dependent O
“ O
Iterative O
Strategy O
” O
Underlying O
the O
Pyrrole O
Polymerization O
In O
biosynthesis O
of O
natural O
products O
, O
potential O
intermediates O
or O
analogs O
of O
a O
particular O
compound O
in O
the O
crude O
extracts O
are O
commonly O
overlooked O
in O
routine O
assays O
due O
to O
their O
low O
concentration O
, O
limited O
structural O
information O
, O
or O
because O
of O
their O
insignificant O
bio-activities O
. O
The O
tylosin O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
Streptomyces O
fradiae O
[ O
407 O
] O
. O
Two O
transporters O
[ O
421 O
] O
( O
GB O
Nos. O
CCA54203 B-bgc-accession
and O
CCA57351 B-bgc-accession
) O
, O
acetyltransferase O
[ O
422 O
] O
, O
and O
a O
phosphotransferase O
[ O
423,424 O
] O
( O
GB O
No. O
CCA57350 B-bgc-accession
) O
were O
reported O
to O
be O
involved O
in O
self-resistance O
. O
Consequently O
, O
derived O
Actinoplanes O
strains O
with O
increased O
acarbose O
yields O
are O
being O
used O
in O
large O
scale O
industrial O
batch O
fermentation O
since O
1990 O
and O
were O
continuously O
optimized O
by O
conventional O
mutagenesis O
and O
screening O
experiments O
. O
The O
Role O
of O
Each O
Gene O
within O
the O
fus O
Gene O
Cluster O
in O
Inhibition O
of O
F. O
oxysporum O
f. O
sp. O
cucumerium O
Results O
Distribution O
of O
the O
anabaenopeptin O
synthesis O
genes O
among O
the O
genus O
planktothrix O
Phylogenetic O
analysis O
of O
all O
125 O
Planktothrix O
strains O
revealed O
a O
diversification O
comprising O
three O
major O
lineages O
: O
Lineage O
1 O
and O
Lineage O
2 O
represented O
only O
the O
strains O
assigned O
to O
P. O
agardhii/P. O
rubescens O
and O
Lineage O
3 O
represented O
P. O
pseudagardhii O
, O
P. O
mougeotii O
, O
and O
P. O
tepida O
( O
Figure O
2 O
) O
. O
Results O
and O
discussion O
General O
features O
of O
anaerobe O
genomes O
with O
respect O
to O
RiPPs O
To O
survey O
the O
diversity O
of O
RiPPs O
we O
have O
undertaken O
a O
bioinformatic O
investigation O
of O
211 O
complete O
and O
published O
anaerobe O
genomes O
for O
the O
presence O
of O
RiPP O
genes O
and O
gene O
clusters O
. O
We O
therefore O
assumed O
that O
proteins O
Au8003 O
and O
Au11565 O
were O
sesterterpene O
synthase O
, O
and O
that O
Au13192 O
was O
diterpene O
synthase O
. O
The O
acn O
cluster O
localized O
to O
a O
39.8 O
kb O
length O
region O
consisting O
of O
25 O
open O
reading O
frames O
( O
ORFs O
) O
, O
including O
a O
set O
of O
four O
genes O
that O
drive O
the O
construction O
of O
the O
4-methyl-3-hydroxy-anthranilic O
acid O
( O
4-MHA O
) O
precursor O
and O
three O
non-ribosomal O
peptide O
synthetases O
( O
NRPSs O
) O
that O
generate O
the O
4-MHA O
pentapeptide O
semi-lactone O
, O
which O
, O
upon O
dimerization O
, O
affords O
final O
actinomycin O
D. O
Furthermore O
, O
the O
acn O
cluster O
contains O
four O
positive O
regulatory O
genes O
acnWU4RO O
, O
which O
were O
identified O
by O
in O
vivo O
gene O
inactivation O
studies O
. O
Discovery O
and O
Biosynthesis O
of O
the O
Antibiotic O
Bicyclomycin O
in O
Distantly O
Related O
Bacterial O
Classes O
ABSTRACT O
Bicyclomycin O
( O
BCM O
) O
is O
a O
clinically O
promising O
antibiotic O
that O
is O
biosynthesized O
by O
Streptomyces O
cinnamoneus O
DSM O
41675 O
. O
Further O
mutation O
analysis O
revealed O
that O
with O
the O
exception O
of O
fusTE O
, O
the O
seven O
genes O
fusG O
, O
fusF O
, O
fusE O
, O
fusD O
, O
fusC O
, O
fusB O
, O
and O
fusA O
within O
the O
fus O
cluster O
were O
all O
involved O
in O
inhibiting O
fungi O
. O
( O
ii O
) O
EPS273-B O
belongs O
to O
P-loop_NTPase O
superfamily O
and O
is O
predicted O
to O
be O
a O
sensor O
kinase O
. O
The O
analysis O
of O
the O
genome O
using O
antiSMASH O
software O
revealed O
that O
29 O
gene O
clusters O
are O
involved O
in O
the O
biosynthesis O
of O
diverse O
secondary O
metabolites O
including O
terpenes O
, O
lanthipeptides O
, O
non-ribosomal O
peptides O
, O
and O
polyketides O
( O
Supplementary O
Table O
S2 O
) O
. O
Their O
inhibitory O
activities O
are O
moderate O
compared O
with O
those O
of O
known O
cathepsin O
B O
inhibitors O
, O
such O
as O
E-64 O
, O
which O
are O
active O
at O
a O
nM O
range O
[ O
23 O
] O
. O
Non-enzymatic O
pyridine O
ring O
formation O
in O
the O
biosynthesis O
of O
the O
rubrolone O
tropolone O
alkaloids O
The O
pyridine O
ring O
is O
a O
potent O
pharmacophore O
in O
alkaloid O
natural O
products O
. O
The O
former O
transporter O
was O
reported O
to O
be O
responsible O
for O
the O
transport O
of O
ochratoxin O
into O
the O
outside O
of O
the O
cell O
. O
Of O
the O
18 O
putative O
genes O
responsible O
for O
EPS273 O
biosynthesis O
, O
four O
genes O
are O
predicted O
to O
encode O
regulatory O
proteins O
. O
A O
Terpene O
Synthase O
Is O
Involved O
in O
the O
Synthesis O
of O
the O
Volatile O
Organic O
Compound O
Sodorifen O
of O
Serratia O
plymuthica O
4Rx13 O
Bacteria O
release O
a O
plethora O
of O
volatile O
organic O
compounds O
, O
including O
compounds O
with O
extraordinary O
structures O
. O
Two O
transporter O
genes O
pmxC O
and O
pmxD O
are O
present O
in O
the O
middle O
of O
the O
cluster O
. O
The O
capreomycin O
biosynthetic O
gene O
cluster O
was O
cloned O
. O
Streptomyces O
sp. O
ICC1 O
and O
Streptomyces O
sp. O
ICC4 O
have O
a O
total O
of O
450 O
subsystems O
while O
S. O
lavendulae O
has O
435 O
, O
indicating O
all O
three O
strains O
likely O
possess O
similar O
specific O
biological O
processes O
and O
structural O
complexes O
( O
Overbeek O
et O
al. O
, O
2005 O
) O
. O
The O
por20 O
is O
homologous O
to O
NRPS O
coding O
gene O
orf21 O
from O
anthramycin O
biosynthesis O
responsible O
for O
anthranilate O
building O
unit O
activation O
. O
This O
is O
of O
particular O
interest O
for O
necrotrophic O
pathogens O
, O
as O
fumonisins O
can O
induce O
plant O
cell O
death O
by O
depletion O
of O
extracellular O
ATP O
[ O
78 O
] O
. O
In O
total O
, O
222 O
SNP O
’s O
were O
located O
in O
the O
coding O
regions O
anaA O
, O
orf O
1 O
, O
anaB O
, O
anaC O
, O
anaD O
, O
anaF O
and O
anaG. O
One O
hundred O
and O
thirty-four O
of O
the O
222 O
SNP O
’s O
were O
synonymous O
and O
88 O
were O
nonsynonymous O
substitutions O
. O
The O
rifamycin O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
Amycolatopsis O
mediterrane O
[ O
445 O
] O
. O
Orf8 O
might O
therefore O
represent O
yet O
another O
fragment O
of O
a O
PST O
biosynthesis O
accessory O
gene O
that O
has O
been O
inactivated O
. O
The O
tomaymycin O
biosynthetic O
gene O
cluster O
was O
cloned O
as O
26 O
kb O
DNA O
fragment O
, O
and O
one O
transporter O
gene O
, O
tomM O
, O
was O
identified O
within O
the O
cluster O
[ O
132 O
] O
( O
GB O
No. O
FJ768957 B-bgc-accession
) O
. O
In O
addition O
to O
DivA O
and O
DivM O
, O
these O
include O
an O
α-ketoglutarate-dependent O
Fe(II O
) O
monooxygenase/β-Asp O
hydroxylase O
( O
DivX O
; O
ARD09204 B-bgc-accession
) O
, O
a O
homolog O
of O
DurN O
( O
WP_071962205.1 B-bgc-accession
) O
shown O
to O
be O
involved O
in O
lysinoalanine O
formation15–17 O
( O
DivN O
; O
ARD09209 B-bgc-accession
) O
, O
a O
SAM-dependent O
methyltransferase O
( O
DivMT O
; O
ARD09206 B-bgc-accession
) O
, O
and O
an O
ABC-type O
transporter O
( O
DivT O
; O
ARD09207 B-bgc-accession
) O
. O
The O
biosynthetic O
gene O
cluster O
for O
nystatin O
was O
cloned O
from O
S. O
noursei O
ATCC11455 O
[ O
281 O
] O
. O
Genbank O
Accession O
Number O
The O
GenBank O
accession O
number O
for O
the O
partial O
salivaricin O
G32 O
( O
sln O
) O
locus O
from O
S. O
salivarius O
strain O
G32 O
is O
JN831266 B-bgc-accession
. O
A O
further O
set O
of O
7 O
ORFs O
( O
nocD O
– O
H O
and O
nocL O
– O
M O
) O
appeared O
to O
be O
connected O
to O
fatty O
acid O
processing O
, O
including O
two O
coding O
sequences O
of O
fatty O
acyl-AMP O
ligases O
( O
FAALs O
) O
and O
associated O
acyl O
carrier O
proteins O
( O
ACPs O
) O
( O
nocH O
and O
nocL O
– O
M O
) O
. O
Intriguingly O
these O
four O
enzymes O
( O
AcOS O
, O
PaFs O
, O
PaPs O
and O
AbFS O
) O
are O
all O
bifunctional O
terpene O
synthases O
that O
each O
possess O
two O
catalytically O
independent O
domains O
namely O
PT O
and O
TC O
, O
and O
can O
therefore O
carry O
out O
both O
chain O
elongation O
and O
terpene O
cyclization O
. O
Genome O
mining O
reveals O
the O
genus O
Xanthomonas O
to O
be O
a O
promising O
reservoir O
for O
new O
bioactive O
non-ribosomally O
synthesized O
peptides O
Background O
Various O
bacteria O
can O
use O
non-ribosomal O
peptide O
synthesis O
( O
NRPS O
) O
to O
produce O
peptides O
or O
other O
small O
molecules O
. O
Recent O
studies O
have O
implicated O
type O
III O
polyketide O
synthases O
( O
PKSs O
) O
in O
cell O
wall O
alterations O
in O
several O
bacteria O
. O
The O
biosynthetic O
gene O
cluster O
for O
microcystin O
spanning O
55 O
kb O
was O
cloned O
( O
GB O
No. O
AF183408 B-bgc-accession
) O
. O
Although O
inactivation O
of O
rubA O
did O
not O
affect O
rubrolone O
production O
( O
Supplementary O
Fig. O
2 O
, O
trace O
IV O
) O
, O
both O
S. O
albus O
9B10-ΔB O
and O
S. O
albus O
9B10-ΔC O
shared O
a O
similar O
metabolite O
profile O
that O
included O
abolished O
production O
of O
1 O
together O
with O
three O
new O
peaks O
5–7 O
( O
Fig. O
2 O
, O
traces O
V O
and O
VI O
) O
. O
The O
indolocarbazole O
staurosporine O
is O
a O
potent O
inhibitor O
of O
a O
variety O
of O
protein O
kinases O
such O
as O
protein O
kinase O
C O
and O
cyclin-dependent O
protein O
kinase O
. O
In O
addition O
, O
there O
are O
several O
efflux O
( O
kanO O
and O
kanN O
) O
and O
ABC O
transporter O
protein O
genes O
( O
kanS O
, O
kan O
R O
and O
kanQ O
) O
. O
K311 O
was O
sequenced O
( O
NCBI O
accession O
number O
: O
JN852959 B-bgc-accession
) O
and O
analyzed O
with O
FramePlot O
and O
18 O
genes O
were O
predicted O
to O
be O
involved O
in O
echinomycin O
biosynthesis O
( O
Figure O
2 O
) O
. O
The O
hamC O
gene O
encodes O
a O
p-aminobenzoate O
N-oxygenase O
, O
known O
as O
AurF O
, O
which O
catalyzes O
the O
conversion O
of O
p-aminobenzoate O
( O
PABA O
) O
to O
p-nitrobenzoate O
(PNBA)19 O
. O
A O
phpR/brpA O
homolog O
, O
which O
we O
assume O
controls O
expression O
of O
the O
PAL O
locus O
, O
was O
found O
in O
the O
corresponding O
location O
in O
K. O
phosalacinea O
. O
Among O
them O
, O
non-disulfide-bridged O
peptides O
are O
attractive O
compounds O
, O
because O
they O
show O
antimicrobial O
, O
antimalarial O
, O
immunosuppressing O
, O
and O
anticancer O
activities O
, O
and O
may O
be O
relevant O
for O
the O
development O
of O
pharmaceutical O
drugs O
[ O
195 O
] O
. O
Lankamycin O
is O
a O
14-membered O
macrolide O
antibiotic O
. O
Interestingly O
, O
E. O
canadensis O
e4815 O
contained O
a O
complete O
EAS O
cluster O
from O
the O
E. O
amarillans O
ancestor O
but O
only O
four O
EAS O
genes O
( O
dmaW O
, O
easE O
, O
easF O
and O
easC O
) O
from O
the O
E. O
elymi O
ancestor O
, O
while O
the O
other O
E. O
canadensis O
isolate O
CWR34 O
only O
contained O
the O
same O
four O
E. O
elymi O
EAS O
genes O
( O
Table O
3 O
) O
. O
This O
locus O
also O
contains O
eight O
other O
genes O
that O
have O
not O
yet O
been O
experimentally O
characterized O
: O
two O
encode O
membrane O
proteins O
( O
mmpS4 O
and O
mmpL10 O
) O
that O
may O
also O
interact O
with O
the O
polyketide O
synthase O
of O
the O
cluster O
, O
two O
encode O
a O
sigma O
factor O
and O
a O
sigma-associated O
protein O
( O
ecf O
and O
sap O
, O
respectively O
) O
that O
are O
believed O
to O
contribute O
to O
the O
regulation O
of O
GPL O
production O
, O
and O
four O
have O
no O
known O
function O
( O
Table O
1 O
and O
Fig. O
1 O
) O
[ O
18,19 O
] O
. O
It O
contains O
15 O
open O
reading O
frames O
, O
including O
tleA O
for O
a O
nonribosomal O
peptide O
synthetase O
, O
tleB O
for O
a O
P-450 O
monooxygenase O
, O
tleC O
for O
an O
aromatic O
prenyltransferase O
, O
and O
three O
genes O
for O
ABC O
transporter O
. O
Two O
self-resistance O
proteins O
were O
reported O
, O
one O
is O
oxygen O
oxidoreductase O
( O
Mcr O
) O
and O
the O
other O
is O
mitomycin-binding O
protein O
( O
Mrd O
) O
[ O
487,488 O
] O
. O
Ciguatoxins O
are O
produced O
by O
benthic O
dinoflagellates O
of O
the O
genus O
Gambierdiscus O
and O
are O
concentrated O
in O
commonly O
consumed O
fish O
in O
the O
tropical O
and O
subtropical O
regions O
of O
the O
world O
, O
through O
the O
marine O
food O
chain O
. O
Therefore O
, O
to O
provide O
additional O
evidence O
that O
the O
correct O
genomic O
locus O
was O
identified O
, O
one O
of O
these O
orfs O
— O
orf21 O
encoding O
a O
putative O
aminoglycoside O
phosphotransferase O
— O
was O
heterologously O
expressed O
in O
1-sensitive O
strains O
to O
reveal O
the O
gene O
product O
confers O
selective O
resistance O
to O
1 O
. O
TblD O
appears O
to O
represent O
an O
interesting O
gene O
fusion O
whose O
product O
is O
a O
full-length O
glucose-methanol-choline-oxidoreductase O
( O
GMC-oxidoreductase O
) O
with O
a O
GNAT O
family O
acetyltransferase O
domain O
on O
the O
carboxy-terminus O
. O
Similarly O
, O
were O
identified O
the O
compound O
Y O
as O
filipin O
I O
( O
Table O
O O
1 O
) O
Therefore O
, O
among O
the O
nine O
cluster O
genes O
involved O
in O
KK-1 O
biosynthesis O
, O
seven O
( O
apart O
from O
NRPS O
and O
the O
transcription-factor-encoding O
gene O
) O
, O
which O
were O
named O
OMT O
, O
TR02 O
, O
TR03 O
, O
TR06 O
, O
TR07 O
, O
TR08 O
, O
and O
TR09 O
( O
see O
Figure O
4 O
) O
, O
were O
introduced O
into O
the O
A. O
oryzae O
strain O
with O
NRPS O
. O
The O
vph O
gene O
encoding O
viomycin O
phosphotransferase O
is O
involved O
in O
the O
self-resistance O
[ O
473 O
] O
. O
The O
prototypical O
members O
of O
the O
group O
I O
lasso O
peptides O
include O
siamycin O
I O
[ O
58 O
] O
, O
siamycin O
II O
[ O
58 O
] O
and O
RP71955 O
[ O
59 O
] O
, O
all O
of O
which O
possess O
two O
disulfide O
bonds O
and O
an O
N-terminal O
cysteine O
[ O
1 O
, O
56 O
, O
57 O
] O
. O
This O
gene O
cluster O
consists O
of O
eight O
genes O
, O
among O
which O
six O
are O
conserved O
in O
the O
helvolic O
acid O
gene O
cluster O
except O
fusC1 O
and O
fusB1 O
. O
These O
results O
confirm O
that O
phaseolotoxin O
is O
a O
virulence O
factor O
. O
A O
mutant O
with O
an O
in-frame O
deletion O
in O
tmlU O
made O
both O
marinolic O
acid O
and O
pyrrothines O
but O
no O
thiomarinol O
( O
Figure O
3 O
) O
strongly O
suggesting O
a O
role O
for O
TmlU O
in O
joining O
them O
together O
. O
Annotation O
of O
the O
genes O
revealed O
a O
type O
II O
polyketide O
biosynthetic O
gene O
cluster O
that O
consists O
of O
36 O
genes O
and O
might O
be O
involved O
in O
the O
biosynthesis O
of O
1 O
and O
2 O
. O
The O
DrrD O
protein O
may O
function O
as O
oxygen O
oxidoreductase O
, O
like O
McrA O
in O
mitomycin O
C O
resistance O
[ O
480 O
] O
. O
Moreover O
, O
a O
set O
of O
mutant O
constructs O
with O
deletion O
of O
alpD O
, O
alpR O
, O
and O
alpE O
genes O
were O
created O
. O
Results O
and O
discussion O
Construction O
of O
JI-20A-overproducing O
strain O
by O
disrupting O
genP O
and O
genK O
genes O
The O
original O
strain O
can O
potentially O
generate O
gentamicin O
B O
; O
as O
such O
, O
we O
determined O
whether O
gentamicin O
B O
is O
synthesized O
from O
the O
2ʹ-amino-containing O
precursor O
by O
the O
KanJ O
and O
KanK O
homologs O
. O
We O
observed O
the O
loss O
of O
microcystin O
during O
cultivation O
of O
a O
closely O
related O
strain O
, O
Phormidium O
sp. O
DVL1003c O
. O
These O
gene O
fragments O
represented O
good O
candidates O
for O
saxitoxin O
biosynthesis O
genes O
due O
to O
their O
homology O
to O
the O
saxitoxin O
genes O
( O
sxtT O
and O
sxtH O
) O
previously O
identified O
in O
C. O
raciborskii O
T3 O
[ O
21 O
] O
. O
An O
acyltransfer O
onto O
the O
analog O
4 O
C-13 O
hydroxyl O
, O
via O
the O
action O
of O
sxtACT O
results O
in O
the O
formation O
of O
analog O
6 O
, O
which O
can O
then O
be O
sulfated O
by O
SxtSUL O
to O
form O
analog O
1 O
. O
Aclacinomycin O
A O
( O
aclarubicin O
) O
, O
a O
trisaccharide O
anthracycline O
, O
is O
shown O
to O
be O
active O
in O
patients O
with O
acute O
myeloblastic O
leukemia O
, O
but O
induces O
late O
cardiac O
toxicity O
. O
To O
verify O
this O
hypothesis O
, O
S. O
netropsis O
CGMCC O
4.1650 O
was O
subjected O
to O
Illumina O
genome O
sequencing O
. O
Of O
them O
, O
six O
genes O
( O
AcmABGKIW O
) O
are O
hypothetical O
genes O
involved O
in O
5′-O-sulfonamide O
formation O
. O
67 O
Transposition/inactive O
sxtP O
1482 O
ABI75126.1 B-bgc-accession
SxtP O
Anabaena O
circinalis O
AWQC131C O
86 O
Regulator/pilli O
formation O
sxtD O
759 O
ABI75125.1 B-bgc-accession
SxtD O
Anabaena O
circinalis O
AWQC131C O
85 O
Desaturation O
sxtE O
363 O
ABI75124.1 B-bgc-accession
SxtE O
Anabaena O
circinalis O
AWQC131C O
90 O
Unknown O
* O
Indicates O
a O
PsiBLAST O
search O
was O
used O
. O
Results O
Identification O
and O
heterologous O
biosynthesis O
of O
pallidocin O
The O
pallidocin O
producer O
strain O
was O
identified O
as O
A. O
pallidus O
8 O
( O
previously O
referred O
to O
as O
Geobacillus O
sp. O
832 O
) O
by O
a O
Genome-to-Genome O
Distance O
Calculator O
( O
GGDC O
) O
using O
a O
digital O
DNA−DNA O
hybridization O
( O
dDDH O
) O
analysis O
tool36 O
. O
HRESI(+)MS O
analysis O
of O
nanangenine O
F O
( O
8) O
revealed O
a O
protonated O
molecule O
( O
[ O
M O
+ O
H]+ O
m/z O
367.2483 O
) O
indicative O
of O
a O
molecular O
formula O
C21H34O5 O
, O
requiring O
one O
fewer O
DBE O
than O
2 O
. O
The O
antitumor O
protein O
actinoxanthin O
was O
isolated O
from O
Actinomyces O
globisporus O
. O
Deletion O
of O
SMA4147 O
did O
not O
affect O
althiomycin O
production O
; O
in O
contrast O
, O
mutation O
of O
SMA2452 O
abolished O
althiomycin O
production O
( O
Figure O
6A O
and O
Figure O
S2 O
) O
. O
Only O
welM2 O
was O
identified O
in O
the O
wel O
gene O
cluster O
from O
FM O
SAG1427 O
- O
1 O
. O
In O
this O
work O
, O
we O
identified O
the O
actinomycin O
biosynthetic O
gene O
cluster O
( O
BGC O
) O
acn O
by O
detailed O
analyses O
of O
the O
S. O
costaricanus O
SCSIO O
ZS0073 O
genome O
. O
The O
resistance O
genes O
encoding O
rRNA O
methyltransferase O
( O
tlrB O
; O
GB O
No. O
AAD12162 B-bgc-accession
) O
and O
the O
ABC O
transporter O
( O
tlrC O
; O
GB O
No. O
AAA26832 B-bgc-accession
) O
are O
located O
at O
both O
ends O
of O
the O
cluster O
. O
( O
82/89 O
, O
the O
81st–174th O
aa)Orf2207DNA-binding O
response O
regulatorAOK24_RS06245/S. O
niveiscabieiWP_063799404.1 O
(61/74)Orf3361Hypothetical O
proteinAOK24_RS06240/S. O
niveiscabieiWP_079056694.1 O
( O
56/67 O
) O
Genes O
encoding O
modular O
PKSs O
Four O
large O
type O
I O
PKSs O
were O
identified O
within O
the O
rdm O
cluster O
. O
The O
suggested O
scheme O
follows O
the O
KEGG O
indole O
diterpene O
biosynthetic O
pathway O
, O
illustrating O
a O
parsimonious O
route O
to O
epoxy-janthitrem O
I O
( O
11 O
, O
12-epoxy-janthitrem O
G O
) O
and O
its O
variants O
( O
epoxy-janthitrems O
II O
– O
IV O
) O
. O
Bacillus O
amyloliquefaciens O
FZB42 O
was O
chosen O
for O
these O
experiments O
because O
it O
already O
harbors O
the O
mersacidin O
immunity O
genes O
. O
The O
sequence O
gaps O
within O
the O
PKS O
genes O
were O
filled O
by O
chromosomal O
walking O
using O
the O
pWLI512 O
or O
pWLI513 O
as O
template O
. O
( O
MIC O
= O
3.0‒12.0 O
µM O
) O
, O
and O
was O
up O
to O
60-fold O
less O
effective O
than O
the O
most O
potent O
compounds O
, O
such O
as O
its O
monoacetylated O
congener O
cylindrocyclophane O
B O
( O
26 O
) O
. O
CSU93 O
Pe O
SVGIDAEPH O
--(x)35 O
- O
- O
FCAKEATYKAWF O
25 O
% O
/ O
34 O
% O
Gramicidin O
Gsp O
Bacillus O
brevis O
str O
. O
Our O
analysis O
thus O
left O
the O
biosynthesis O
of O
2 O
as O
the O
remaining O
unknown O
, O
and O
only O
the O
products O
of O
obaG O
and O
obaH O
to O
be O
functionally O
assigned O
. O
The O
functions O
of O
Rv0926 O
and O
Rv1174c O
are O
not O
known O
, O
sap O
and O
ecf O
may O
play O
roles O
in O
the O
regulation O
of O
GPL O
biosynthesis O
, O
and O
were O
this O
the O
case O
, O
it O
would O
suggest O
that O
the O
regulatory O
circuits O
in O
these O
species O
have O
diverged O
. O
The O
MlbQ O
polypeptide O
is O
a O
small O
lipoprotein O
from O
the O
NAI-107 O
biosynthetic O
gene O
cluster O
in O
Microbispora O
ATCC O
PTA-5024 O
that O
confers O
specific O
resistance O
to O
NAI-107-like O
lantibiotics.321 O
Like O
the O
coordinated O
immunity O
provided O
by O
LanI O
and O
LanEFG O
proteins O
, O
protection O
against O
NAI-107 O
like O
lantibiotics O
is O
conferred O
by O
several O
proteins O
, O
MlbJQYX.321 O
Although O
MlbQ O
sequesters O
NAI-107 O
and O
functions O
analogously O
to O
NisI O
and O
SpaI O
, O
its O
structure O
shows O
a O
novel O
topology O
consisting O
of O
four O
β O
strands O
topped O
by O
two O
short O
helices O
( O
Figure O
19A O
) O
. O
Each O
module O
of O
a O
canonical O
PKS O
has O
minimally O
a O
ketosynthase O
( O
KS O
) O
domain O
, O
an O
acyltransferase O
( O
AT O
) O
specifying O
the O
nature O
of O
the O
incoming O
extension O
unit O
, O
and O
an O
acylcarrier O
protein O
( O
ACP O
) O
that O
tethers O
intermediates O
to O
the O
assembly O
line O
. O
However O
, O
in O
general O
, O
this O
type O
of O
PKS O
enzymes O
is O
thought O
to O
be O
the O
major O
class O
of O
polyketide O
biosynthesis O
machineries O
. O
It O
results O
from O
swallowed O
spores O
of O
Clostridium O
botulinum O
( O
or O
rarely O
, O
neurotoxigenic O
Clostridium O
butyricum O
or O
Clostridium O
baratii O
) O
that O
germinate O
and O
temporarily O
colonize O
the O
lumen O
of O
the O
large O
intestine O
, O
where O
, O
as O
vegetative O
cells O
, O
they O
produce O
botulinum O
toxin O
. O
High-resolution O
positive O
electrospray O
ionisation O
mass O
spectrometry O
( O
HRESI(+)MS O
) O
analysis O
of O
nanangenine O
A O
( O
1 O
) O
revealed O
an O
adduct O
ion O
( O
[ O
M O
+ O
Na]+ O
m/z O
305.1363 O
) O
indicative O
of O
a O
molecular O
formula O
C15H22O5 O
requiring O
five O
double O
bond O
equivalents O
( O
DBE O
) O
. O
The O
streptothricin O
group O
antibiotics O
show O
a O
broad O
antibacterial O
spectrum O
. O
Mangotoxin O
, O
which O
is O
a O
more O
recently O
described O
toxin O
, O
inhibits O
ornithine O
acetyltransferase O
( O
OAT O
) O
( O
Figure O
1 O
) O
, O
producing O
an O
ornithine O
deficit O
and O
interfering O
with O
arginine O
metabolism O
. O
The O
viomycin O
biosynthetic O
gene O
cluster O
was O
cloned O
and O
sequenced O
. O
From O
the O
sequence O
data O
of O
these O
two O
vectors O
, O
we O
confirmed O
that O
the O
assembly O
line O
organizations O
of O
JBIR-06 O
and O
neoantimycin O
NRPS-PKSs O
were O
identical O
with O
those O
in O
the O
previous O
report32 O
, O
except O
for O
NatD O
( O
Fig. O
O O
1 O
) O
TueB O
also O
houses O
a O
C-terminal O
domain O
bearing O
significant O
sequence O
resemblance O
to O
the O
cyclisation O
( O
Cy O
) O
domains O
of O
NRPS O
multienzymes O
, O
which O
typically O
catalyse O
the O
heterocyclisation O
of O
cysteine O
and O
serine/threonine O
to O
thiazoline O
and O
oxazoline O
rings.35 O
This O
TueB O
domain O
contains O
the O
active O
site O
sequence O
motif O
DxxxxDxxS O
( O
where O
x O
is O
any O
amino O
acid O
) O
conserved O
in O
Cy O
domains.36 O
TueC O
contains O
an O
adenylation O
domain O
predicted O
to O
be O
specific O
for O
the O
activation O
of O
l-cysteine O
, O
and O
a O
peptidyl O
carrier O
protein O
( O
PCP O
) O
domain O
to O
which O
the O
cysteinyl O
residue O
is O
proposed O
to O
become O
tethered.37 O
The O
co-location O
of O
a O
gene O
encoding O
cysteine O
activation O
with O
an O
unusual O
PKS O
pointed O
to O
the O
identity O
of O
this O
cluster O
as O
governing O
thiotetronate O
biosynthesis O
. O
For O
that O
purpose O
, O
a O
series O
of O
mutant O
strains O
affected O
in O
NQ O
biosynthesis O
putative O
genes O
( O
Fig. O
O O
5 O
) O
was O
generated O
by O
disruption O
of O
gonP8 O
, O
or O
individual O
deletion O
of O
gonM4 O
, O
gonMT O
, O
gonSL O
, O
gonS1 O
or O
gonS2 O
The O
lichenicidins O
consist O
of O
two O
single O
peptides O
which O
gain O
their O
full O
activity O
only O
in O
combination O
[ O
30 O
] O
and O
they O
are O
encoded O
by O
two O
different O
precursor O
peptides O
as O
well O
as O
modified O
by O
two O
separate O
LanM O
enzymes O
. O
Further O
, O
we O
exploit O
these O
findings O
to O
guide O
the O
design O
of O
artificial O
cytolytic O
toxins O
that O
are O
recognized O
by O
the O
SLS O
biosynthetic O
enzymes O
and O
others O
that O
are O
intrinsically O
cytolytic O
. O
We O
thus O
consider O
that O
AscR O
positively O
regulates O
the O
expression O
of O
both O
the O
asc-1 O
and O
-2 O
cluster O
genes O
by O
binding O
to O
this O
motif O
. O
Furthermore O
, O
in O
contrast O
to O
diacetylated O
cylindrofridin O
C O
( O
30 O
) O
, O
monoacetylated O
congeners O
A O
( O
28 O
) O
and O
B O
( O
29 O
) O
were O
also O
active O
against O
MRSA O
strains O
N315 O
and O
Mu50 O
( O
MICs O
between O
6.0 O
and O
21.6 O
µM O
) O
. O
In O
all O
cases O
we O
did O
not O
observe O
growth O
inhibitory O
activity O
in O
the O
concentration O
range O
up O
to O
100 O
μg/ml O
. O
The O
wzx O
, O
wzy O
and O
wzz O
OPS O
processing O
genes O
are O
present O
in O
all O
gene O
clusters O
, O
indicating O
that O
all O
Y. O
pseudotuberculosis O
serotypes O
use O
the O
Wzx/Wzy-dependent O
pathway O
for O
O-antigen O
biosynthesis O
. O
Characterization O
of O
the O
asc-2 O
Cluster O
Genes O
. O
In O
this O
paper O
, O
we O
first O
report O
on O
the O
30 O
kb O
gene O
cluster O
( O
23 O
genes O
, O
acmA O
to O
acmW O
) O
involved O
in O
the O
biosynthesis O
of O
these O
two O
antibiotics O
and O
a O
biosynthetic O
assembly O
line O
was O
proposed O
. O
Results O
and O
discussion O
Identification O
of O
the O
talopeptin O
biosynthetic O
gene O
cluster O
To O
explore O
the O
genetic O
basis O
for O
the O
assembly O
of O
1 O
and O
2 O
we O
sequenced O
the O
genome O
of O
Streptomyces O
mozunensis O
MK-23 O
, O
the O
original O
talopeptin O
producer O
. O
This O
analysis O
predicted O
that O
the O
operon O
encodes O
a O
three O
protein O
hybrid O
NRPS-PKS O
assembly O
line O
( O
alb4 O
, O
alb5 O
and O
alb6 O
) O
, O
associated O
tailoring O
enzymes O
( O
alb2 O
and O
alb3 O
) O
and O
an O
export O
and/or O
resistance O
protein O
( O
alb1 O
) O
. O
In O
addition O
, O
GliT O
, O
a O
gliotoxin O
reductase O
, O
plays O
an O
important O
role O
in O
the O
self-resistance O
[ O
344,345 O
] O
. O
The O
genes O
for O
apoprotein O
( O
kedA O
) O
and O
two O
transporters O
( O
kedX2 O
and O
kedX O
) O
are O
present O
within O
the O
cluster O
. O
At O
first O
the O
leader O
peptide O
of O
bacteriocin O
KM432Bz O
was O
identified O
from O
translation O
analysis O
of O
the O
gene O
cluster O
sequence O
and O
showed O
to O
have O
an O
identical O
amino O
acid O
sequence O
to O
that O
shared O
by O
leucocin O
B-Ta11a O
and O
leucocin O
A-QU15 O
( O
Fig. O
4 O
) O
, O
the O
latter O
having O
also O
been O
isolated O
from O
a O
Leuc O
. O
oryzae O
strains O
X8 O
- O
1A O
and O
X11 O
- O
5A O
, O
possess O
novel O
NRPS O
gene O
clusters O
and O
share O
related O
NRPS-associated O
genes O
such O
as O
those O
required O
for O
the O
biosynthesis O
of O
non-proteinogenic O
amino O
acids O
or O
the O
secretion O
of O
peptides O
. O
AcmX O
and O
AcmY O
were O
shown O
to O
share O
high O
homology O
to O
all O
known O
FAD-dependent O
chlorinases O
, O
such O
as O
ChlB4 O
( O
accession O
number O
AAZ77674 B-bgc-accession
) O
from O
Streptomyces O
antibiotics O
which O
participate O
in O
chlorothricin O
biosynthesis O
( O
65 O
% O
and O
57 O
% O
protein O
sequence O
identity O
respectively O
) O
[ O
32 O
] O
. O
Methymycin O
is O
a O
12-membered O
macrolide O
that O
is O
isolated O
from O
Streptomyces O
venezuelae O
. O
The O
cluster O
was O
intermediated O
by O
an O
unrelated O
gene O
annotated O
as O
hypothetical O
protein O
, O
the O
trans-isoprenyl O
diphosphate O
synthase O
( O
II5_05400 O
) O
. O
In O
addition O
, O
identification O
of O
amphipathic O
α-helices O
in O
the O
primary O
sequence O
and O
immuno-detection O
of O
NisB O
in O
vesicles O
of O
L. O
lactis O
lead O
to O
the O
expectation O
that O
NisB O
may O
be O
membrane O
associated,182 O
which O
also O
stalled O
biochemical O
efforts O
. O
Amino O
acid O
sequence O
of O
leucocin O
B-KM432Bz O
precursor O
( O
this O
study O
) O
was O
aligned O
class O
IIa O
bacteriocin O
precursors O
from O
Leuconostoc O
: O
leucocin O
A-UAL187 O
, O
leucocin O
A-QU15 O
, O
leucocin O
B-Ta11a O
, O
mesentericin O
Y105 O
and O
pediocin O
PA-1 O
from O
Ped O
. O
Based O
on O
these O
facts O
, O
we O
hypothesized O
that O
the O
six-gene-mediated O
reaction O
is O
likely O
to O
be O
a O
common O
pathway O
in O
the O
early O
stage O
biosynthesis O
of O
all O
fusidane-type O
antibiotics O
to O
give O
the O
key O
intermediate O
2 O
, O
which O
is O
then O
bifurcated O
to O
generate O
different O
fusidane-type O
antibiotics O
under O
the O
action O
of O
different O
post-modification O
enzymes O
( O
Fig. O
2D O
) O
. O
We O
also O
demonstrated O
that O
MinCN O
( O
the O
N-terminal O
phosphatase O
domain O
of O
MinC O
) O
, O
MinD O
( O
uracil O
phosphoribosyltransferase O
) O
, O
and O
MinT O
( O
transporter O
) O
function O
together O
as O
the O
safeguard O
enzymes O
, O
which O
collaboratively O
constitute O
an O
unusual O
self-resistance O
system O
. O
Physical O
map O
of O
the O
genomic O
region O
containing O
the O
XaPPTase O
gene O
in O
Xanthomonas O
oryzae O
strains O
and O
of O
the O
corresponding O
region O
in O
other O
sequenced O
species O
of O
Xanthomonas O
. O
hydrophila O
ATCC O
7966 O
99 O
YP_857384 B-bgc-accession
ORF3 O
3295 O
.. O
4308 O
nucleotide O
sugar O
epimerase O
wcaG O
Aeromonas O
hydrophila O
subsp O
. O
Deduced O
Functions O
of O
Open O
Reading O
Frames O
in O
the O
Tautomycetin O
Biosynthetic O
Gene O
Cluster O
gene O
sizea O
proposed O
function O
homologueb O
identity%/ O
similarity% O
orf(−1 O
) O
262 O
transposase O
MUL_2441 O
( O
YP_906264 O
) O
32/42 O
Upstream O
boundary O
of O
the O
ttn O
cluster O
ttnQ O
472 O
transcriptional O
activator O
StaR O
( O
BAC55205 O
) O
13/19 O
ttnJ O
560 O
multidrug O
transporter O
RHA1_ro04399 O
( O
YP_704343 O
) O
49/53 O
ttnI O
449 O
cytochrome O
P450 O
EryF O
( O
1Z8Q_A O
) O
30/43 O
ttnR O
470 O
dehydratase O
PrpD O
( O
2HP3_A O
) O
24/38 O
ttnS O
272 O
unknown O
PFL_4035 O
( O
YP_261132 O
) O
27/39 O
ttnH O
259 O
thioesterase O
PikAV O
( O
AAC69333 O
) O
42/53 O
ttnG O
926 O
regulatory O
protein O
ThcG O
( O
AAD28307 O
) O
33/46 O
ttnF O
505 O
l-carnitine O
dehydratase O
CaiB O
( O
1XK7_B O
) O
12/24 O
ttnE O
444 O
crotonyl-CoA O
reductase O
Ccr O
( O
AAA92890 O
) O
75/84 O
ttnD O
485 O
UbiD O
family O
decarboxylases O
UbiD O
( O
2IDB_A O
) O
24/36 O
ttnC O
209 O
flavoprotein O
decarboxylase O
VdcB O
( O
AAD28781 O
) O
57/71 O
ttnB O
7576 O
PKS O
modules O
6–9 O
ttnA O
9528 O
PKS O
loading O
module O
and O
modules O
1–5 O
ttnK O
465 O
esterase O
PnbA O
( O
1QE3_A O
) O
29/44 O
ttnP O
383 O
CoA O
transferase O
CaiB O
( O
1XVV_A O
) O
24/41 O
ttnO O
309 O
citryl O
CoA O
lyase O
Mtb O
CitE O
( O
1Z6K_A O
) O
24/37 O
ttnN O
363 O
unknown O
EhpF O
( O
AAN40895 O
) O
37/52 O
ttnM O
339 O
hydroxylase O
Plav_0577 O
( O
YP_001411857 O
) O
29/42 O
ttnL O
185 O
unknown O
Ybhb O
( O
1FUX_A O
) O
25/33 O
Downstream O
boundary O
of O
the O
ttn O
cluster O
orf1 O
507 O
polyprenyl O
phospho-mannosyltransferase O
MppI O
( O
AAU34200 O
) O
32/48 O
Numbers O
are O
in O
amino O
acids O
. O
Importantly O
, O
the O
tlsC O
gene O
was O
also O
associated O
with O
putative O
genes O
encoding O
YcaO-type O
dehydratase O
( O
tlsQ O
) O
and O
flavin-dependent O
oxidoreductase O
( O
tlsP O
) O
in O
the O
same O
operon O
( O
Table O
O O
S1 O
) O
The O
XaPPTase O
gene O
was O
found O
in O
all O
analyzed O
strains O
of O
X. O
albilineans O
and O
X. O
oryzae O
. O
Introduction O
Aminoglycosides O
( O
AGs O
) O
constitute O
one O
of O
the O
oldest O
classes O
of O
clinically O
important O
antibiotics O
( O
Becker O
and O
Cooper O
, O
2013 O
; O
Jackson O
et O
O O
al. O
, O
2013 O
Some O
argimycins O
P O
showed O
a O
piperidine O
ring O
with O
a O
polyene O
side O
chain O
( O
argimycin O
PIX O
) O
; O
others O
contain O
also O
a O
fused O
five-membered O
ring O
( O
argimycins O
PIV-PVI O
) O
. O
However O
, O
recent O
genome O
sequencing O
and O
transcriptome O
analysis O
, O
combined O
with O
blast O
analysis O
, O
indicate O
that O
monofunctional O
Type O
I O
PKS O
are O
present O
in O
brevetoxin-producing O
dinoflagellates O
Karenia O
brevis O
[ O
38,39 O
] O
, O
Alexandrium O
ostenfeldii O
[ O
40 O
] O
, O
and O
Heterocapsa O
triqueta O
[ O
41 O
] O
. O
Three O
ORFs O
of O
brnQ1 O
, O
napA1 O
and O
DHelicase O
that O
amplified O
and O
sequenced O
from O
the O
genomic O
DNA O
of O
L. O
plantarum O
I-UL4 O
were O
also O
found O
in O
the O
reported O
operons O
. O
Similarly O
, O
an O
in-frame O
deletion O
was O
created O
in O
the O
PKS-NRPS O
gene O
tlmA O
in O
order O
to O
link O
the O
putative O
tlm O
cluster O
in O
Lentzea O
sp. O
ATCC O
31319 O
to O
the O
production O
of O
TLM O
. O
Gene O
name O
in O
P. O
roqueforti O
Strain O
CECT2905a O
Strain O
FM164b O
Size O
of O
the O
deducedproteinc O
( O
aminoacids O
) O
Putative O
function O
in O
andrastin O
A O
biosynthesisd O
Identity O
( O
% O
) O
withorthologous O
proteins O
ofthe O
P. O
chrysogenum O
adr O
cluster O
adrA O
Proq04g062820 O
508 O
Cytochrome O
P450 O
monooxygenase O
94 O
adrC O
Proq04g062830 O
1,452 O
MFS O
transporter O
83 O
adrD O
Proq04g062840 O
2,495 O
Polyketide O
synthase O
83 O
adrE O
Proq04g062850 O
336 O
Ketoreductase O
89 O
adrF O
Proq04g062860a O
256 O
Short O
chain O
dehydrogenase O
91 O
adrG O
Proq04g062870 O
316 O
Prenyltransferase O
87 O
adrH O
Proq04g062880a O
476 O
FAD-dependent O
monooxygenase O
83 O
adrI O
Proq04g062890 O
245 O
Terpene O
cyclase O
94 O
adrJ O
Proq04g062900 O
496 O
Acetyltransferase O
85 O
adrK O
Proq04g062910 O
278 O
Methyltransferase O
94 O
Despite O
several O
efforts O
, O
we O
did O
not O
found O
any O
ORF O
with O
similarity O
to O
the O
adrB O
gene O
from O
P. O
chrysogenum O
in O
the O
P. O
roqueforti O
genome O
. O
The O
mode O
of O
action O
of O
edeines O
was O
reported O
to O
inhibit O
DNA O
synthesis O
at O
low O
concentration O
, O
and O
translation O
at O
high O
concentration O
, O
and O
also O
inhibit O
cell O
division O
[ O
455 O
] O
. O
Interestingly O
, O
acetylated O
cylindrocyclophanes O
26 O
and O
27 O
( O
MICs O
of O
3.2‒6.4 O
and O
95.7 O
µM O
) O
as O
well O
as O
cylindrofridins O
28 O
and O
29 O
( O
MICs O
of O
10.8 O
and O
12.1‒48.2 O
µM O
) O
tended O
to O
be O
less O
potent O
, O
and O
diacetylated O
cylindrofridin O
30 O
was O
not O
active O
in O
the O
concentration O
range O
tested O
. O
A O
tobramycin O
producer O
, O
S. O
tenebrarius O
, O
was O
reported O
to O
produce O
rRNA O
methyltransferase O
( O
KgmB O
) O
[ O
35 O
] O
. O
All O
L. O
monocytogenes O
lineages O
produce O
the O
haemolysin O
Listeriolysin O
O O
( O
a O
60 O
kDa O
protein O
encoded O
by O
hly O
located O
within O
LIPI-1 O
) O
[ O
15 O
] O
, O
[26]–[28 O
] O
which O
would O
be O
expected O
to O
mask O
any O
haemolytic O
activity O
associated O
with O
LLS O
. O
In O
silico O
analysis O
of O
the O
draft O
genome O
of O
M. O
O O
echinospora O
CCTCC O
M O
2018898 O
using O
antiSMASH O
( O
Weber O
et O
O O
al. O
, O
2015 O
) O
allowed O
the O
identification O
of O
a O
gene O
cluster O
containing O
32 O
open O
reading O
frames O
( O
Fig. O
O O
1A O
) O
, O
which O
show O
the O
same O
gene O
organization O
pattern O
and O
share O
on O
average O
96 O
% O
sequence O
identity O
with O
genes O
in O
the O
previously O
characterized O
gentamicin O
gene O
cluster O
of O
M. O
O O
echinospora O
ATCC15835 O
( O
GenBank B-bgc-accession
accession O
number O
: O
KY971520 O
) O
( O
2014).Fig O
. O
The O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
A. O
fumigatus O
, O
containing O
a O
major O
facilitator O
superfamily O
type O
transporter O
[ O
342 O
] O
. O
Furthermore O
, O
the O
EcdB O
TF O
also O
showed O
similarity O
with O
other O
in-cluster O
TF O
of O
fungal O
secondary O
metabolite O
such O
as O
AfoA O
, O
CtnR O
, O
Dep6 O
, O
CurR O
, O
RhaR O
and O
Sol4 O
which O
regulate O
asperfuranone O
, O
citrinin O
, O
depudecin O
, O
dehydrocurvularin O
, O
L-rhamnose O
, O
and O
solanopyrone O
biosynthetic O
gene O
cluster O
respectively O
. O
The O
LOL O
cluster O
of O
E. O
brachyelytri O
E4804 O
, O
which O
accumulates O
AcAP O
without O
an O
ether O
bridge O
, O
had O
an O
inactive O
lolO O
gene O
due O
to O
an O
internal O
deletion O
, O
and O
also O
lacked O
functional O
lolN O
, O
lolM O
, O
and O
lolP O
genes O
. O
Kanamycin O
A O
yields O
were O
4059±204 O
and O
4161±269 O
μg/mL O
, O
respectively O
( O
Fig O
5B O
) O
. O
On O
the O
other O
hand O
, O
in O
bud O
flowers O
, O
the O
monoterpenes O
compounds O
were O
shown O
as O
the O
main O
group O
( O
1.11 O
% O
) O
, O
followed O
by O
one O
diterpene O
and O
one O
sesquiterpene O
compound O
represented O
( O
0.48 O
and O
0.03 O
% O
) O
, O
respectively O
. O
In O
addition O
to O
the O
precursor O
peptide O
named O
LclA O
the O
gene O
cluster O
encodes O
a O
transporter O
( O
LclB O
) O
and O
an O
additional O
protein O
that O
is O
important O
for O
immunity O
( O
Figure O
O O
10A O
) O
While O
friulimicin O
B O
inhibits O
the O
cell O
wall O
precursor O
cycle O
, O
the O
exact O
mechanism O
of O
action O
of O
laspartomycin O
remains O
to O
be O
clarified O
[ O
269 O
] O
. O
In O
the O
case O
of O
alpiniamide O
D O
, O
module O
2 O
is O
probably O
skipped O
entirely O
during O
the O
biosynthesis O
since O
it O
lacks O
the O
C-1 O
and O
C-2 O
part O
of O
the O
molecule O
. O
The O
dehydrated O
precursor O
peptide O
to O
prochlorosin O
1.6 O
( O
Figure O
25 O
) O
also O
potentially O
contains O
this O
motif O
but O
the O
sites O
of O
dehydration O
, O
and O
its O
ring O
topology O
and O
stereochemistry O
, O
have O
not O
yet O
been O
determined O
. O
Tobramycin O
is O
3′-deoxykanamycin O
B. O
The O
biosynthetic O
gene O
clusters O
were O
cloned O
from O
Streptoalloteichus O
tenebrarius O
and O
Streptoalloteichus O
hindustanus O
[ O
30,32,33 O
] O
( O
GB O
Nos. O
AJ579650 B-bgc-accession
, O
and O
AJ810851 B-bgc-accession
) O
. O
Antiproliferative O
Activity O
OMS O
A O
was O
also O
reported O
to O
display O
cytotoxicity O
against O
human O
lung O
cancer O
A549 O
, O
colon O
cancer O
HCT116 O
, O
stomach O
cancer O
SNU638 O
, O
liver O
cancer O
SK-HEP-1 O
, O
and O
breast O
cancer O
MDA-MB-231 O
cell O
lines O
, O
which O
are O
major O
solid-cancer O
types O
, O
whereas O
it O
did O
not O
show O
antiproliferative O
effect O
against O
the O
normal O
lung O
fibroblast O
MRC-5 O
cell O
line O
[ O
1 O
] O
. O
In O
addition O
the O
antB O
and O
antC O
promoters O
must O
be O
regulated O
by O
a O
transcription O
factor O
encoded O
outside O
of O
the O
ant O
gene O
cluster O
since O
they O
are O
upregulated O
at O
18 O
h O
relative O
to O
42 O
h O
growth O
. O
Trioxacarcins O
( O
TXNs O
) O
are O
highly O
oxygenated O
, O
polycyclic O
aromatic O
natural O
products O
with O
remarkable O
biological O
activity O
and O
structural O
complexity O
. O
Goettingen O
, O
P. O
thermopropionicum O
SI O
; O
Numbers O
represent O
the O
locus O
tag O
for O
each O
gene O
within O
the O
genome O
sequence O
of O
each O
organism O
. O
The O
final O
module O
of O
AprL O
is O
highly O
unusual O
. O
The O
genomic O
organization O
of O
the O
pam O
cluster O
revealed O
a O
size O
of O
∼60 O
O O
kb O
comprising O
five O
NRPS O
genes O
, O
two O
PKS O
genes O
, O
and O
two O
NRPS/PKS O
hybrid O
genes O
( O
gene O
locus O
tags O
ERIC2_c18040 O
– O
ERIC2 O
_ O
c180170 O
) O
( O
Fig.2 O
, O
Table O
S1 O
) O
Within O
the O
actinomycin O
BGC O
in O
S. O
costaricanus O
SCSIO O
ZS0073 O
, O
we O
identified O
a O
cytochrome O
P450 O
gene O
, O
acnP O
, O
that O
encodes O
a O
436 O
aa O
protein O
. O
It O
has O
an O
immunosuppressive O
activity O
and O
is O
a O
virulent O
factor O
of O
the O
human O
fungal O
pathogens O
. O
These O
gene O
clusters O
are O
typically O
present O
in O
blocks O
of O
genes O
that O
appear O
to O
be O
integrated O
into O
specific O
sites O
in O
the O
P. O
syringae O
core O
genome O
. O
This O
would O
probably O
increase O
the O
specificity O
of O
substrate O
recognition O
, O
as O
in O
the O
cases O
of O
SbzC O
and O
SbzI. O
Enzymes O
involved O
in O
biogenesis O
of O
sulfonamide O
To O
elucidate O
the O
biosynthesis O
of O
sulfonamide O
and O
the O
N O
– O
S O
bond-forming O
reaction O
, O
we O
tested O
the O
gene O
deletions O
of O
sbzF O
, O
H O
, O
J O
, O
and O
M O
– O
Q O
( O
Supplementary O
Table O
O O
1 O
) O
Sactipeptides O
Sactipeptides O
or O
sactibiotics O
( O
sulphur O
to O
alpha-carbon O
antibiotic O
) O
are O
peptides O
in O
which O
a O
sulfur O
bridge O
is O
post-translationally O
formed O
between O
a O
cysteine O
residue O
and O
the O
α-carbon O
of O
another O
residue O
( O
Figure O
O O
5B O
& O
C O
) O
, O
in O
contrast O
to O
lanthipeptides O
where O
the O
sulfur O
bridge O
is O
installed O
via O
the O
β-carbon O
[ O
1 O
, O
34 O
] O
The O
presumably O
nonenzymatic O
hydrolysis O
of O
N-terminal O
Dha O
or O
Dhb O
that O
occurs O
upon O
leader O
peptide O
proteolysis O
to O
afford O
N-terminal O
2-oxopropionyl O
and O
2-oxobutyryl O
groups O
, O
respectively O
, O
is O
seen O
in O
both O
class O
I O
and O
II O
lanthipeptides O
( O
e.g. O
, O
Pep5 O
and O
pinensin O
from O
class O
I;276 O
lichenicidin O
, O
lacticin O
3147 O
, O
and O
lactocin O
S O
from O
class O
II O
; O
Figures O
5 O
, O
23 O
, O
and O
40).410 O
In O
addition O
, O
disulfide O
formation O
is O
observed O
in O
class O
II O
and O
class O
III O
, O
with O
examples O
in O
class O
II O
including O
haloduracin O
α O
and O
bovicin O
HJ50 O
( O
Figure O
21 O
) O
. O
Half O
of O
the O
12 O
hybrid O
species O
investigated O
had O
EAS O
clusters O
, O
and O
each O
of O
three O
hybrid O
species O
, O
E. O
canadensis O
, O
N. O
coenophialum O
and O
FaTG-2 O
( O
G2 O
) O
, O
had O
EAS O
clusters O
from O
two O
different O
ancestors O
. O
Perhaps O
the O
crosstalk O
between O
primary O
and O
secondary O
metabolisms O
provides O
a O
unique O
advantage O
for O
antibiotic-producing O
strains O
to O
balance O
the O
excess O
of O
nutrient O
substances O
and O
survive O
in O
harsh O
, O
nutrient-limited O
environments O
[ O
27,28 O
] O
. O
In O
general O
, O
biosynthetic O
enzymes O
involved O
in O
lanthipeptide O
biosynthesis O
have O
been O
given O
the O
generic O
prefix O
Lan,152 O
with O
a O
more O
specific O
descriptor O
for O
specific O
compounds O
( O
e.g. O
, O
Nis O
for O
nisin O
, O
Lct O
for O
lacticin O
481 O
, O
Cin O
for O
cinnamycin O
) O
. O
Natamycin O
is O
a O
polyene O
macrolide O
antifungal O
antibiotic O
. O
At O
the O
left O
end O
of O
the O
cluster O
, O
a O
gene O
coding O
for O
an O
unknown O
protein O
( O
orf3 O
) O
and O
several O
others O
coding O
for O
regulatory O
proteins O
( O
orf1 O
, O
orf2 O
and O
arpRI O
) O
were O
located O
. O
The O
fermentation O
broth O
, O
produced O
by O
double O
cross-over O
mutants O
, O
was O
extracted O
with O
ethyl O
acetate O
and O
analysed O
for O
the O
presence O
of O
filipin O
III O
( O
the O
major O
component O
of O
the O
filipin O
complex O
) O
. O
The O
gene O
cluster O
for O
the O
biosynthesis O
of O
thienamycin O
is O
located O
in O
the O
plasmid O
of O
S. O
cattleya O
[ O
467,468 O
] O
( O
GB O
No. O
AJ421798 B-bgc-accession
) O
. O
Most O
ORFs O
shown O
in O
blue O
have O
roles O
the O
synthesis O
and O
activation O
of O
phosphonoformate O
, O
an O
early O
intermediate O
. O
Chemical O
and O
Enzymatic O
Synthesis O
of O
Capuramycin O
and O
Analogs O
Since O
the O
structural O
elucidation O
of O
capuramycin O
in O
1988 O
[ O
33 O
] O
, O
a O
few O
total O
syntheses O
have O
been O
independently O
reported O
. O
The O
first O
three O
genes O
, O
wxoA O
( O
encodes O
a O
predicted O
epimerase O
) O
, O
wxoB O
and O
wxoC O
( O
both O
encode O
predicted O
glycosyl O
transferases O
) O
have O
been O
described O
earlier O
. O
In O
contrast O
, O
E. O
glyceriae O
E277 O
, O
E. O
typhina O
E5819 O
, O
and O
the O
two O
E. O
festucae O
isolates O
lacked O
lpsC O
, O
consistent O
with O
the O
observation O
that O
E. O
festucae O
Fl1 O
produced O
an O
ergopeptine O
( O
ergovaline O
) O
but O
not O
EN O
or O
LAH O
. O
For O
these O
78 O
cps O
, O
a O
total O
of O
1515 O
coding O
sequences O
were O
annotated O
, O
including O
galF O
( O
n O
O O
= O
O O
79 O
) O
, O
cpsACP O
( O
n O
O O
= O
O O
80 O
) O
, O
wzi O
( O
n O
O O
= O
O O
78 O
) O
, O
wza O
( O
n O
O O
= O
O O
81 O
) O
, O
wzb O
( O
n O
O O
= O
O O
78 O
) O
, O
wzc O
( O
n O
O O
= O
O O
78 O
) O
, O
gnd O
( O
n O
O O
= O
O O
79 O
) O
, O
manB O
( O
n O
O O
= O
O O
43 O
rmlB O
( O
n O
O O
= O
O O
29 O
) O
, O
rmlC O
( O
n O
O O
= O
O O
30 O
) O
, O
rmlD O
( O
n O
O O
= O
O O
30 O
) O
, O
wcaJ O
( O
n O
O O
= O
O O
40 O
) O
, O
wbaP O
( O
n O
O O
= O
O O
39 O
) O
, O
gmd O
( O
n O
O O
= O
O O
6 O
) O
, O
wcaG O
( O
n O
O O
= O
O O
6 O
) O
, O
glf O
( O
n O
O O
= O
O O
5 O
) O
, O
wzx O
( O
n O
O O
= O
O O
77 O
) O
glycosyl O
hydrolase O
( O
n O
O O
= O
O O
33 O
) O
, O
acetyltransferases O
( O
n O
O O
= O
O O
35 O
) O
, O
pyruvyltransferases O
( O
n O
O O
= O
O O
35 O
) O
, O
transposases O
( O
n O
O O
= O
O O
21 O
) O
, O
nitroreductase O
( O
n O
O O
= O
O O
2 O
) O
, O
potassium/proton O
antiporter O
( O
n O
O O
= O
O O
2 O
) O
, O
tail O
fiber O
( O
n O
O O
= O
O O
4-epimerase O
( O
n O
O O
= O
O O
1 O
) O
, O
carbohydrate O
lyase O
( O
n O
O O
= O
O O
1 O
) O
, O
CMP-N-acetylneuraminic O
acid O
synthetase O
( O
n O
O O
= O
O O
1 O
) O
, O
coenzyme O
F420 O
hydrogenase O
( O
n O
O O
= O
O O
1 O
) O
and O
hypothetical O
proteins O
( O
n O
O O
However O
, O
the O
predicted O
substrate O
specificity O
of O
AT0 O
in O
the O
loading O
module O
is O
methylmalonyl-CoA O
instead O
of O
malonyl-CoA. O
Interestingly O
, O
the O
rdm O
cluster O
contains O
a O
five-gene O
regulation O
system O
RdmACDEF O
, O
which O
is O
different O
from O
other O
reported O
polyene O
gene O
clusters O
. O
Fosfomycin O
has O
a O
unique O
chemical O
structure O
, O
containing O
a O
carbon-phosphorus O
and O
an O
epoxide O
. O
Insertion O
of O
IS10 O
occurred O
after O
nucleotide O
12871 O
of O
GenBank O
accession O
number O
HQ172897 B-bgc-accession
and O
resulted O
in O
the O
duplication O
of O
residues O
12863 O
to O
12871 O
. O
In O
U. O
maydis O
, O
localization O
studies O
using O
fluorescently O
labeled O
siderophore O
analogs O
suggests O
ferrichrome O
A O
may O
function O
as O
both O
an O
extracellular O
and O
intracellular O
siderophore O
for O
iron O
scavenging O
and O
storage O
respectively O
[ O
43 O
] O
. O
A O
second O
series O
of O
vectors O
was O
therefore O
constructed O
exploiting O
the O
adenine O
auxotrophy O
of O
A. O
oryzae O
NSAR1 O
and O
which O
contained O
combinations O
of O
str10 O
, O
str8 O
and O
str11 O
, O
which O
encode O
a O
CoA O
ligase O
, O
a O
non-haem O
iron O
oxygenase O
and O
a O
PAL O
respectively O
( O
see O
O O
Supplementary O
Methods O
) O
Specifically O
, O
an O
extra O
dioxygenase O
( O
sxtdiox O
, O
present O
in O
R. O
brookii O
) O
, O
two O
additional O
sulfotransferases O
( O
sxtN2 O
and O
sxtSUL O
( O
present O
in O
R. O
brookii O
) O
, O
two O
additional O
exporters O
( O
sxtM1 O
and O
sxtM2 O
) O
, O
and O
a O
novel O
acyl O
transferase O
( O
sxtACT O
) O
define O
the O
L. O
wollei O
pathway O
. O
Antimicrobial O
activity O
was O
quantified O
by O
measuring O
the O
diameter O
of O
the O
inhibition O
halo O
( O
mm O
) O
, O
considering O
as O
positive O
results O
only O
diameters O
higher O
than O
3 O
mm O
. O
To O
date O
, O
characterized O
labionin-containing O
lanthipeptides O
are O
the O
labyrinthopeptide O
[ O
21 O
] O
, O
erythreapeptin O
[ O
26 O
] O
, O
avermipeptin O
[ O
26 O
] O
, O
griseopeptin O
[ O
26 O
] O
, O
catenulipeptin O
[ O
27 O
] O
and O
NAI112 O
[ O
23 O
] O
. O
Thus O
, O
polyketide O
compounds O
are O
discussed O
at O
first O
, O
focusing O
mainly O
on O
their O
self-resistance O
to O
phycotoxins O
. O
Introduction O
Saxitoxin O
and O
its O
derivatives O
, O
collectively O
termed O
paralytic O
shellfish O
toxins O
( O
PST O
) O
, O
are O
a O
group O
of O
low O
molecular O
weight O
, O
highly O
potent O
neurotoxic O
alkaloids O
which O
inhibit O
nerve O
conduction O
and O
muscle O
contraction O
by O
selectively O
binding O
and O
blocking O
of O
sodium O
channels O
. O
Their O
respective O
overlapping O
glycosyltransferase O
genes O
( O
XALc_0365 O
and O
XALc_1144 O
) O
share O
62 O
% O
amino O
acid O
similarity O
( O
Additional O
file O
3 O
) O
. O
Two O
putative O
polyketide O
cyclases O
, O
RubE5 O
and O
RubE6 O
, O
are O
also O
found O
within O
the O
rub O
gene O
cluster O
and O
share O
high O
sequence O
similarity O
with O
the O
cyclase/dehydratase O
protein O
ZhuJ O
( O
69 O
% O
identity O
) O
and O
cyclase O
ZhuI O
( O
79 O
% O
identity O
) O
, O
respectively25 O
. O
Two O
separate O
clusters O
are O
clearly O
distinguished O
( O
Fig O
4 O
) O
: O
the O
sxt O
gene O
cluster O
of O
Norwegian O
strain O
NIVA-CYA O
851 O
is O
most O
closely O
related O
to O
A. O
gracile O
strain O
NH-5 O
, O
and O
both O
cluster O
together O
with O
German O
strain O
NIVA-CYA O
655 O
. O
Furthermore O
, O
proteins O
important O
for O
secretion O
are O
also O
located O
within O
several O
of O
the O
gene O
clusters O
( O
Figure O
O O
8A).Table O
7 O
Detected O
putative O
NHLP/Niff11-like O
gene O
cluster O
PhylumPrecursor O
(Leader O
: O
Core)+ O
Gene O
tag O
of O
precursor O
peptidesReference O
# O
Eggerthellalenta O
VPI O
0255Actinobacteria121 O
( O
71:50 O
) O
Elen_2949 O
122 O
( O
71:51 O
) O
Elen_2953 O
130 O
( O
71:59 O
) O
Elen_2954 O
Desulfarculusbaarsii O
2st14 O
, O
2075δ- O
Proteobacteria111 O
( O
71:40 O
) O
Deba_2490 O
Syntrophomonas O
wolfei O
subsp O
. O
As O
shown O
in O
Fig. O
3 O
, O
the O
recombinant O
S. O
avermitilis O
gained O
the O
ability O
to O
produce O
Tü O
3010 O
at O
levels O
comparable O
to O
those O
produced O
by O
S. O
thiolactonus O
NRRL O
15439 O
, O
clearly O
demonstrating O
that O
thiotetronate O
biosynthesis O
relies O
on O
hijacking O
of O
a O
sulfur O
supply O
mechanism O
from O
primary O
metabolism O
. O
Moreover O
, O
the O
involvement O
of O
the O
M13 O
DH O
domain O
( O
GonP5 O
) O
in O
the O
polyketide O
biosynthesis O
is O
unlikely O
due O
to O
the O
lack O
of O
a O
KR O
domain O
in O
this O
module O
catalyzing O
a O
previous O
ketoreduction O
reaction O
. O
Similar O
type O
of O
gene O
clusters O
are O
found O
in O
biosyntheses O
of O
microcins O
that O
are O
produced O
by O
Gram-negative O
bacteria O
[ O
126 O
] O
, O
bacteriocins O
in O
Gram-positive O
bacteria O
[ O
127 O
] O
, O
microviridin O
in O
cyanobacteria O
[ O
128 O
] O
, O
and O
goadsporin O
in O
Streptomyces O
[ O
129 O
] O
. O
Finally O
, O
a O
α-humulene/β-caryophyllene O
synthase O
( O
SoHUMS O
) O
gene O
showed O
the O
highest O
expression O
levels O
in O
stems O
, O
followed O
by O
young O
leaves O
, O
old O
leaves O
, O
bud O
flowers O
and O
flowers O
. O
Results O
Predicting O
the O
atc O
biosynthetic O
gene O
cluster O
in O
a O
different O
organism O
The O
published O
atc O
biosynthetic O
gene O
cluster O
in O
Streptomyces O
sp. O
T676 O
comprises O
nine O
genes/proteins O
( O
AtcA-AtcI O
, O
accession O
no. O
LN871452 B-bgc-accession
) O
, O
where O
four O
of O
them O
( O
AtcC-AtcF O
) O
have O
been O
proposed O
to O
be O
functionally O
involved O
in O
the O
generation O
of O
anthracimycin O
. O
Acetyltransferase O
activity O
was O
reported O
to O
be O
involved O
in O
the O
self-resistance O
in O
kasugamycin-producing O
S. O
kasugaensis O
[ O
65 O
] O
. O
TRI8 O
Alexander O
et O
al. O
[ O
42 O
] O
reported O
that O
, O
in O
Fusarium O
, O
3-ADON O
and O
15-ADON O
are O
important O
chemotypes O
that O
differ O
at O
the O
intra-specific O
and O
inter-specific O
levels O
and O
confirmed O
the O
genetic O
basis O
for O
this O
difference O
in O
chemotype O
based O
on O
TRI8-specific O
primers O
for O
genotype O
characterization O
of O
F. O
graminearum O
. O
Gene O
acmE O
located O
between O
acmD O
and O
acmF O
whose O
translated O
product O
weakly O
resemble O
an O
aminopeptidase O
from O
Xanthomonas O
campestris O
( O
accession O
number O
BAA11623 B-bgc-accession
, O
20 O
% O
identity O
) O
which O
have O
been O
demonstrated O
in O
vitro O
to O
catalyse O
a O
hydrolysis O
reaction O
of O
ascamycin O
to O
dealanylascamycin O
causing O
the O
host O
to O
become O
susceptible O
to O
ascamycin O
[ O
36 O
] O
. O
Also O
, O
the O
type O
F7 O
toxin O
gene O
cluster O
lacked O
a O
botR O
regulatory O
gene O
, O
as O
is O
the O
case O
with O
the O
nonproteolytic O
C. O
botulinum O
type O
E O
, O
nonproteolytic O
C. O
butyricum O
type O
E O
and O
nonproteolytic O
C. O
botulinum O
type O
F6 O
toxin O
gene O
clusters O
[ O
8 O
] O
, O
[ O
16 O
] O
, O
[ O
32 O
] O
. O
We O
investigated O
the O
occurrence O
of O
type O
III O
pks O
genes O
in O
Mmar O
. O
Furthermore O
, O
three O
ABC O
transporter O
genes O
are O
present O
, O
adjacent O
to O
the O
tleABC O
genes O
. O
Proposed O
Function O
A-500359 O
A-503083 O
A-102395 O
Fe(II)- O
and O
αKG-dependent O
dioxygenase O
orf7 O
capD O
cpr18 O
Capuramycin-2′-O-carbamoyltransferase O
orf8 O
capB O
NA O
Putative O
3-ketoreductase O
orf9 O
capC O
cpr20 O
Fe(II)-dependent O
, O
αKG O
: O
UMP O
dioxygenase O
orf10 O
capA O
cpr19 O
Putative O
2,3-dehydratase O
orf11 O
capE O
cpr21 O
Putative O
4-epimerase O
orf12 O
capF O
cpr22 O
PLP-dependent O
monooxygenase-decarboxylase O
orf12 O
’ O
cap15 O
cpr23 O
Putative O
glycosyl O
transferase O
orf13 O
capG O
cpr24 O
l-Thr O
: O
uridine-5′-aldehyde O
transaldolase O
orf14 O
capH O
cpr25 O
Putative O
pyrophosphatase O
orf15 O
capI O
cpr26 O
Putative O
CO O
dehydrogenase O
orf16 O
capJ O
cpr28 O
Putative O
O-methyltransferase O
orf16 O
’ O
capK O
cpr29 O
Putative O
CO O
dehydrogenase O
orf17 O
capL O
cpr30 O
Putative O
CO O
dehydrogenase O
orf18 O
capM O
cpr31 O
Putative O
ABC O
transporter O
orf19 O
capN O
NA O
Putative O
ABC O
transporter O
orf20 O
capO O
NA O
Capuramycin O
3′′-phosphotransferase O
orf21 O
capP O
cpr17 O
UDP-glucose-4,6-dehydratase O
orf22 O
capQ O
NA O
Glucose-1-phosphate O
thymidylyltransferase O
orf23 O
capR O
NA O
Putative O
carboxyl O
methyltransferase O
orf24 O
capS O
cpr27 O
Putative O
l-ACL O
C-methyltransferase O
orf25 O
capT O
NA O
Nonribosomal O
peptide O
synthetase O
orf26 O
capU O
NA O
Nonribosomal O
peptide O
synthetase O
orf27 O
capV O
NA O
Transacylase O
orf28 O
capW O
cpr51 O
Antimycobacterial O
activities O
of O
several O
capuramycin O
analogs O
prepared O
through O
semisynthesis O
. O
Our O
findings O
suggest O
that O
Pse O
biosynthesis O
in O
T. O
forsythia O
ATCC O
43037 O
follows O
essentially O
the O
same O
biosynthetic O
route O
as O
in O
C. O
jejuni O
and O
H. O
pylori O
( O
Schoenhofen O
et O
al. O
2006b O
) O
. O
To O
increase O
sensitivity O
, O
we O
adopted O
a O
liquid O
phase O
hemolysis O
assay O
. O
Besides O
its O
inhibitory O
effect O
against O
cancer O
cell O
growth O
, O
the O
anti-metastatic O
activity O
of O
compound O
4 O
against O
AGS O
gastric O
cancer O
cell O
line O
was O
also O
determined O
through O
migration O
and O
invasion O
assays O
. O
Regulation O
of O
antimycin O
biosynthesis O
by O
the O
orphan O
ECF O
RNA O
polymerase O
sigma O
factor O
σAntA O
Antimycins O
are O
an O
extended O
family O
of O
depsipeptides O
that O
are O
made O
by O
filamentous O
actinomycete O
bacteria O
and O
were O
first O
isolated O
more O
than O
60 O
years O
ago O
. O
Most O
of O
the O
epichloae O
had O
approximately O
11 O
Mb O
of O
coding O
sequence O
, O
with O
the O
exception O
of O
E. O
glyceriae O
E277 O
, O
which O
had O
14.9 O
Mb O
of O
coding O
sequence O
. O
Chlorothricin O
is O
a O
medium-sized O
spirotetronate O
class O
antibiotic O
, O
and O
inhibits O
pyruvate O
carboxylases O
from O
rat O
liver O
and O
Azotobacter O
vinelandii O
and O
cholesterol O
biosynthesis O
. O
LangelandFirmicutes O
CLI_0567 O
clostridiolysin O
S O
Thermoanaerobacter O
mathranii O
mathranii O
A3 O
, O
DSM O
11426Firmicutes O
Tmath_0475 O
* O
* O
M. O
smegmatis O
M. O
abscessus O
M. O
chelonae O
Gene O
Gene O
n O
° O
Proposed O
function(a O
) O
Gene O
n O
° O
% O
( O
b O
) O
Gene O
n O
° O
% O
( O
b O
) O
O O
mmpS4 O
MSMEG0373 O
Membrane O
associated O
The O
polymyxin O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
P. O
polymyxa O
and O
characterized O
[ O
316 O
] O
. O
Fortimicin O
( O
astromicin O
) O
is O
an O
aminoglycoside O
antibiotic O
that O
is O
produced O
by O
Micromonospora O
olivasterospora O
, O
and O
fmrO O
encoding O
16S O
rRNA O
methyltransferase O
, O
plays O
a O
role O
in O
self-resistance O
[ O
396 O
] O
. O
Results O
Screening O
of O
a O
cosmid O
library O
of O
S. O
griseus O
genomic O
DNA O
As O
screening O
probes O
, O
the O
DNA O
fragments O
of O
KS O
, O
ALS O
and O
FkbH-like O
protein O
were O
firstly O
amplified O
from O
S. O
griseus O
DSM O
2608 O
chromosomal O
DNA O
. O
RSK2980 O
] O
Sequence O
ID O
: O
ref|YP_001569863.1| O
67/81 O
11 O
wbuC O
12380:12877 O
165 O
unknown O
conserved O
LPS O
biosynthetic O
protein O
[ O
Salmonella O
enterica O
subsp O
. O
The O
species O
include O
Y. O
pseudotuberculosis/Y. O
pestis O
, O
Y. O
similis O
( O
Sprague O
et O
O O
al. O
2008 O
) O
and O
the O
newly O
characterised O
Y. O
wautersii O
( O
previously O
referred O
to O
as O
the O
‘ O
Korean O
group O
’ O
) O
that O
is O
proposed O
to O
have O
pathogenic O
potential O
( O
Savin O
et O
O O
al. O
2014 O
These O
findings O
are O
not O
only O
of O
significance O
in O
elucidating O
and O
understanding O
host O
– O
pathogen O
interactions O
but O
also O
within O
the O
context O
of O
the O
quest O
for O
new O
compounds O
with O
antibiotic O
activity O
for O
drug O
development O
. O
At O
the O
right O
end O
of O
the O
gene O
cluster O
, O
a O
protein O
encoded O
by O
notR O
showed O
38 O
% O
sequence O
identity O
to O
the O
AflJ O
aflatoxin O
pathway O
transcriptional O
co-activator10 O
. O
We O
have O
identified O
novel O
clusters O
, O
both O
with O
single O
and O
two O
LanM O
determinants O
, O
in O
four O
representatives O
of O
Streptomyces O
( O
Fig. O
2 O
) O
, O
which O
are O
discussed O
here O
. O
Relaxed O
fatty O
acid O
specificity O
during O
lipoinitiation O
by O
XtlA O
( O
acylation O
with O
3-hydroxydodec-5-enoate O
instead O
of O
3-hydroxydecanoate O
) O
and O
for O
incorporation O
of O
the O
ultimate O
amino O
acid O
by O
XtlC O
( O
valine O
instead O
of O
isoleucine O
) O
account O
for O
the O
production O
of O
the O
minor O
structural O
variants O
xantholysin O
C O
and O
B O
, O
respectively O
. O
From O
this O
point O
, O
it O
is O
intriguing O
to O
consider O
that O
pya22 O
, O
pya23 O
and O
pya24 O
may O
encode O
another O
set O
of O
standalone O
NRPS O
domains O
, O
which O
are O
specifically O
involved O
in O
the O
biosynthesis O
of O
the O
formyl O
group O
containing O
pyrrolamides O
such O
as O
2 O
and O
3 O
. O
While O
Brevibacterium O
, O
Bacillus O
and O
Pelagibacter O
were O
known O
as O
marine O
phenazine O
producers O
[ O
36–38 O
] O
, O
this O
is O
the O
first O
time O
that O
representatives O
of O
the O
genera O
Micromonospora O
, O
Kiloniella O
and O
Pseudovibrio O
were O
identified O
as O
marine O
phenazine O
producers O
as O
well O
. O
Results O
A O
region O
of O
13,778 O
base O
pairs O
of O
DNA O
from O
the O
S. O
filipinensis O
genome O
was O
isolated O
, O
sequenced O
, O
and O
characterized O
. O
C)amb O
gene O
cluster O
from O
Fischerella O
ambigua O
UTEX O
1903 O
[ O
7 O
] O
. O
[ O
Streptomyces O
sp. O
275]100 O
% O
srcmRII O
PadR O
family O
transcriptional O
regulator186CmmRII O
[ O
Streptomyces O
griseus O
subsp O
. O
inebrians O
E818 O
was O
arranged O
similarly O
to O
that O
of O
P. O
ipomoeae O
and O
the O
Claviceps O
species O
, O
it O
was O
broken O
into O
two O
clusters O
, O
one O
of O
which O
ended O
in O
a O
telomere O
located O
one O
bp O
from O
the O
cloA O
stop O
codon O
. O
Cultures O
of O
all O
eight O
available O
isolates O
of O
six O
Metarhizium O
species O
, O
but O
not O
of O
M. O
album O
, O
produced O
detectable O
levels O
of O
swainsonine O
( O
Table O
S1 O
in O
File O
S1 O
) O
, O
showing O
a O
strong O
correlation O
of O
SWN O
cluster O
presence O
and O
swainsonine O
production O
. O
– O
– O
II O
– O
– O
– O
– O
idtJ O
Another O
ORF O
( O
nocP O
) O
was O
annotated O
as O
a O
simple O
PKS O
gene O
. O
If O
the O
proposed O
pathway O
( O
intramolecular O
hydroalkoxylation O
at O
C-8 O
) O
proceeds O
enzymatically O
( O
catalyzed O
by O
MarG O
) O
, O
then O
the O
premarineosin O
A O
( O
9 O
) O
might O
be O
the O
intermediate O
of O
marineosins O
A O
and O
B. O
It O
is O
noteworthy O
that O
the O
premarineosin O
B O
( O
11 O
) O
most O
likely O
arises O
from O
an O
inversion O
of O
the O
aminal O
nitrogen O
of O
premarineosin O
A O
( O
9 O
) O
under O
pathway O
conditions O
where O
the O
two O
isomers O
differ O
only O
in O
stereochemistry O
at O
the O
spiro O
aminal O
carbon O
( O
C-8 O
) O
. O
These O
results O
confirm O
that O
TalE O
catalyzes O
the O
second O
step O
in O
the O
biosynthesis O
of O
1 O
and O
2 O
using O
the O
TalD O
product O
4 O
and O
ATP O
as O
substrates O
to O
form O
5 O
. O
A O
likely O
product O
from O
cluster O
5 O
was O
predicted O
as O
ectoine O
, O
its O
BGC O
has O
high O
similarity O
with O
its O
counterpart O
in O
Streptomyces O
anulatus O
. O
Polyketides O
are O
biosynthesized O
via O
the O
sequential O
condensations O
of O
small O
carboxylic O
acid O
subunits O
with O
an O
acyl O
starter O
in O
a O
fashion O
that O
is O
reminiscent O
of O
fatty O
acid O
biosynthesis O
. O
Among O
them O
, O
six O
genes O
, O
fusA O
, O
fusB2 O
, O
fusB3 O
, O
fusB4 O
, O
fusC2 O
and O
fusD O
encode O
proteins O
with O
high O
sequence O
similarity O
( O
37%-65 O
% O
identity O
) O
to O
those O
encoded O
by O
helA O
, O
helB2 O
, O
helB4 O
, O
helB1 O
, O
helC O
and O
helD2 O
in O
the O
gene O
cluster O
of O
helvolic O
acid O
. O
Restoration O
of O
antifungal O
production O
close O
to O
wild O
type O
levels O
indicates O
that O
control O
of O
filipin O
production O
by O
phosphate O
is O
mediated O
by O
PhoRP O
in O
S. O
filipinensis O
. O
In O
addition O
to O
revealing O
plausible O
candidates O
for O
the O
biosynthetic O
gene O
clusters O
for O
thiotetronates O
( O
1 O
) O
and O
( O
4 O
) O
, O
a O
search O
of O
published O
genome O
sequences O
using O
the O
bioinformatics O
tool O
antiSMASH3 O
revealed O
a O
gene O
cluster O
similar O
to O
that O
for O
TLM O
in O
the O
fully-sequenced O
genome O
of O
Streptomyces O
cattleya O
NRRL O
8057 O
(SCAT5757-SCAT5761).45 O
Manual O
BLAST O
searching O
uncovered O
a O
further O
two O
Tü O
3010-like O
gene O
clusters O
in O
, O
respectively O
, O
Streptomyces O
afghanensis O
277 O
( O
NCBI O
identifiers O
EPJ35918 B-bgc-accession
to O
EPJ34243 B-bgc-accession
) O
and O
Streptomyces O
incarnatus O
NRRL O
8089 O
( O
NCBI O
identifiers O
ABB07_06605 O
to O
ABB07_06685 O
) O
. O
In O
this O
test O
, O
S. O
salivarius O
G32 O
and O
S. O
dysgalactiae O
61 O
both O
gave O
P-type O
436 O
inhibitory O
profiles O
identical O
to O
that O
of O
S. O
pyogenes O
FF22 O
( O
Table O
1 O
) O
. O
hydrophila O
ATCC O
7966 O
100 O
YP_857391 B-bgc-accession
ORF10 O
10651 O
.. O
11673 O
RimK-like O
protein O
rimK O
Aeromonas O
hydrophila O
subsp O
. O
Enediyne O
Antitumor O
Antibiotics O
The O
enediyne O
antitumor O
antibiotics O
are O
a O
growing O
family O
of O
natural O
products O
with O
novel O
molecular O
architecture O
with O
triple O
bonds O
, O
and O
unique O
biological O
activity O
. O
A O
set O
of O
eight O
genes O
, O
designated O
lomo1–8 O
, O
were O
most O
likely O
to O
code O
for O
enzymes O
relating O
to O
the O
shikimate O
pathway O
[ O
2 O
] O
. O
It O
is O
tempting O
to O
speculate O
that O
they O
may O
be O
involved O
in O
the O
formation O
of O
the O
N-oxide O
group O
found O
in O
JBIR-46 O
and O
JBIR-48 O
, O
but O
so O
far O
there O
is O
no O
direct O
evidence O
to O
support O
this O
speculation O
. O
A. O
circinalis O
AWQC131C O
PST O
biosynthesis O
gene O
cluster O
is O
available O
under O
accession O
number O
DQ787201 B-bgc-accession
. O
and O
Aspergillus O
spp O
. O
The O
results O
revealed O
that O
only O
the O
addition O
of O
the O
ferric O
iron O
salt O
FeCl3 O
( O
as O
well O
as O
the O
addition O
of O
ferrous O
iron O
FeSO4 O
; O
data O
not O
shown O
) O
triggered O
production O
of O
the O
green O
pigmented O
ferroverdin O
A O
by O
S. O
lunaelactis O
MM109 O
T O
( O
Fig. O
O O
2A O
) O
In O
addition O
to O
structural O
or O
defensive O
roles O
during O
fungal O
disease O
, O
recent O
work O
in O
M. O
fijiensis O
demonstrated O
that O
DHN-melanin O
generates O
highly O
reactive O
oxygen O
species O
that O
may O
facilitate O
host O
cell O
death O
[ O
53 O
] O
. O
The O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
Saccharothrix O
( O
Lechevalieria O
) O
aerocolonigenes O
[ O
380,381 O
] O
. O
It O
should O
be O
noted O
that O
AviCys O
residues O
are O
also O
observed O
in O
two O
other O
classes O
of O
RiPP O
natural O
products O
, O
namely O
linaridins297,298 O
and O
thioviridamides.299 O
Although O
linaridins O
such O
as O
cypemycin297 O
and O
grisemycin298 O
contain O
the O
dehydro O
amino O
acid O
Dhb O
, O
the O
biosynthetic O
gene O
clusters O
for O
these O
molecules O
do O
not O
encode O
obvious O
homologues O
of O
either O
the O
lanthipeptide O
dehydratase O
that O
is O
necessary O
for O
installation O
of O
the O
Dha/Dhb O
or O
the O
lanthipeptide O
cyclase O
implicated O
in O
AviCys O
formation O
. O
jejuni O
legI O
(Cj1327)56391Legionaminic O
acid O
synthaseSchoenhofen O
et O
al. O
(2009)BFO_1063C O
. O
These O
results O
confirm O
that O
non-identical O
parts O
of O
the O
puwainaphycin O
variants O
are O
situated O
in O
the O
unusual O
FA O
aliphatic O
chain O
whereas O
the O
remaining O
part O
of O
the O
molecule O
is O
identical O
for O
all O
the O
puwainaphycin O
analogs O
, O
based O
on O
the O
PUW-F/PUW-G O
structures O
. O
The O
NRPS O
OhmA O
encodes O
12 O
modules O
containing O
the O
entire O
41 O
domains O
. O
The O
lipotetradecadepsipeptides O
are O
assembled O
by O
XtlA O
, O
XtlB O
and O
XtlC O
, O
three O
co-linearly O
operating O
non-ribosomal O
peptide O
synthetases O
( O
NRPSs O
) O
displaying O
similarity O
in O
modular O
architecture O
with O
the O
entolysin-producing O
enzymes O
of O
the O
entomopathogenic O
Pseudomonas O
entomophila O
L48 O
. O
Considering O
the O
puwainaphycin O
F/G O
variants O
reported O
in O
this O
study O
, O
the O
A-domain O
appears O
to O
accept O
both O
asparagine O
and O
glutamine O
as O
a O
substrate O
at O
a O
defined O
rate O
, O
as O
further O
demonstrated O
by O
MS O
measurements O
. O
Antibiotic O
production O
in O
S. O
natalensis O
, O
S. O
lividans O
and O
S. O
lydicus O
ΔphoP O
mutants O
is O
also O
sensitive O
to O
high O
Pi O
concentrations O
[ O
22,33,34 O
] O
, O
thus O
it O
seems O
likely O
that O
a O
yet O
unidentified O
PhoP-independent O
mechanism O
blocks O
antibiotic O
biosynthesis O
under O
excess O
phosphate O
conditions O
. O
We O
believe O
SMA2293-SMA2288 O
( O
alb1–alb6 O
) O
form O
a O
single O
operon O
since O
alb1–alb2 O
are O
co-transcribed O
( O
Figure O
2B O
) O
, O
there O
is O
less O
than O
5 O
bp O
between O
alb2–3 O
and O
alb4–5 O
, O
and O
translational O
coupling O
is O
observed O
between O
alb3–alb4 O
( O
see O
below O
) O
. O
Cluster O
boundaries O
analysis O
On O
the O
cluster O
left O
side O
, O
genes O
gonMR O
, O
gonL1 O
, O
gonL2 O
and O
gonL3 O
were O
presumed O
to O
code O
for O
pathway-specific O
regulators O
for O
PM100117/18 O
biosynthesis O
, O
and O
orf9 O
, O
which O
codes O
for O
a O
putative O
dioxygenase O
, O
was O
a O
candidate O
gene O
to O
accomplish O
polyketide O
post-PKS O
oxygenations O
. O
Putative O
epipolythiodioxopiperazine O
biosynthetic O
gene O
cluster O
Cluster O
9 O
contains O
a O
total O
of O
19 O
predicted O
genes O
, O
including O
a O
NRPS O
, O
and O
was O
highly O
comparable O
to O
epipolythiodioxopiperazine O
( O
ETP O
) O
biosynthetic O
clusters O
from O
numerous O
fungi O
. O
Notably O
, O
CurKC O
is O
encoded O
in O
the O
genome O
of O
the O
thermophile O
Thermomonospora O
curvata,131 O
which O
may O
provide O
improved O
thermostability O
of O
both O
the O
final O
product O
and O
the O
biosynthetic O
enzymes O
as O
seen O
for O
the O
class O
II O
lanthipeptide O
geobacilin O
II.394,486 O
Dehydration O
via O
Phosphorylation O
Although O
RamC O
was O
the O
first O
discovered O
class O
III O
lanthipeptide O
synthetase O
, O
the O
extreme O
insolubility O
of O
its O
substrate O
RamS O
precluded O
any O
in O
vitro O
studies O
. O
idtK O
– O
– O
II O
, O
V O
– O
II O
II O
– O
idtE O
For O
Pseudanabaena O
sp. O
dqh15 O
, O
total O
ion O
chromatography O
and O
mass O
spectrum O
revealed O
that O
the O
compound O
peak O
with O
a O
retention O
time O
of O
11.64 O
min O
was O
the O
main O
odorous O
component O
, O
and O
this O
corresponded O
to O
2-MIB O
( O
Figure O
2 O
) O
. O
99–100%/N O
= O
4 O
600 O
87–100 O
% O
97–100 O
% O
TRI13 O
cytochrome O
P450 O
monooxygenase O
1010 O
; O
1060 O
92–100%/N O
= O
13 O
99–100%/N O
= O
4 O
315 O
76–100 O
% O
98–100 O
% O
TRI14 O
unknown O
658 O
; O
660 O
75–100%/N O
= O
41 O
97–100%/N O
= O
4 O
; O
11 O
; O
8 O
202 O
89–100 O
% O
99–100 O
% O
TRI16 O
acyl O
transferase O
1143 O
90–100%/N O
= O
8 O
99–100%/N O
= O
4 O
381 O
60–100 O
% O
99–100 O
% O
TRI101 O
acetyl O
transferase O
925 O
; O
1244 O
96–100%/N O
= O
17 O
; O
33 O
99–100%/N O
= O
11 O
; O
8 O
; O
6 O
444 O
79–100 O
% O
99–100 O
% O
TRI1 O
cytochrome O
P450 O
monooxygenase O
664 O
; O
1755 O
94–100%/N O
= O
8 O
99–100%/N O
= O
100 O
512 O
85–100 O
% O
98–100 O
% O
Commonly O
used O
primers O
designed O
against O
specific O
target O
genes O
of O
the O
TRI O
gene O
cluster O
for O
Fusarium O
. O
carnosum O
Ta11a O
, O
the O
amino O
acid O
sequence O
of O
which O
will O
be O
called O
leucocin O
B-Ta11a O
below O
] O
. O
Similarly O
, O
the O
transcription O
of O
remaining O
genes O
of O
the O
cluster O
was O
also O
affected O
negatively O
, O
including O
the O
three O
regulatory O
genes O
filR O
, O
filF O
and O
filI O
( O
Fig O
3 O
) O
. O
For O
M1152/pEVK13 O
( O
kyaR1 O
only O
) O
, O
we O
observed O
a O
zone O
of O
inhibition O
which O
was O
approximately O
three O
times O
smaller O
than O
for O
the O
M1152/pEVK6 O
( O
kyaR1L O
) O
positive O
control O
. O
We O
propose O
that O
the O
glucose-1-phosphate O
thymidylyltransferase O
(RubS5)32 O
and O
dTDP-glucose O
4,6-dehydratase O
(RubS4)33 O
sequentially O
transform O
glucose-1-phosphate O
( O
9 O
) O
to O
dTDP-4-keto-6-deoxy-D-glucose O
( O
9b O
) O
via O
dTDP-D-glucose O
( O
9a O
) O
, O
followed O
by O
RubS3-catalysed O
ketoreduction O
to O
dTDP-D-fucose O
( O
9c O
) O
( O
Fig. O
3c)34 O
. O
Introduction O
Phenazines O
are O
important O
microbial O
secondary O
metabolites O
. O
Lane O
1 O
, O
DNA O
molecular O
weight O
markers O
; O
lanes O
2 O
and O
4 O
, O
S. O
suis O
3908 O
; O
lanes O
3 O
and O
5 O
, O
S. O
suis O
94–623 O
; O
lanes O
2 O
and O
3 O
, O
sslA O
gene O
; O
lanes O
4 O
and O
5 O
, O
gdh O
gene O
. O
The O
biosynthetic O
gene O
cluster O
was O
cloned O
as O
90 O
kb O
DNA O
fragment O
[ O
54,55 O
] O
( O
GB O
No. O
AJ862840 B-bgc-accession
) O
. O
The O
fourth O
gene O
is O
wxoD O
and O
encodes O
a O
predicted O
327 O
amino O
acids O
long O
protein O
. O
The O
cmrA O
and O
cmrB O
genes O
encode O
the O
ABC O
transporters O
, O
and O
cmrX O
encodes O
an O
UvrA-like O
UV O
repair O
nuclease O
. O
It O
has O
hepatoxic O
and O
neurotoxic O
effects O
and O
is O
a O
potential O
carcinogen O
. O
Knockdown O
of O
ctcS O
altered O
the O
transcription O
of O
several O
biosynthesis-related O
genes O
and O
reduced O
the O
production O
of O
tetracycline O
( O
TC O
) O
and O
CTC O
, O
without O
obvious O
effect O
on O
morphological O
differentiation O
and O
cell O
growth O
. O
Only O
a O
fragmented O
part O
of O
this O
gene O
is O
present O
in O
the O
A. O
circinalis O
AWQC131C O
sxt O
gene O
cluster O
, O
while O
sxtV O
in O
the O
Aph O
. O
Their O
clinical O
use O
is O
limited O
by O
their O
toxicity O
. O
As O
expected O
, O
we O
retrieved O
the O
four O
Streptomyces O
strains O
discussed O
above O
first O
but O
, O
in O
addition O
, O
we O
found O
sequence O
equivalents O
for O
all O
41 O
functional O
domains O
for O
AtcC-AtcF O
in O
the O
genome O
of O
Nocardiopsis O
kunsanensis O
, O
a O
species O
belonging O
to O
the O
same O
taxonomic O
class O
( O
Actinobacteria O
) O
but O
in O
a O
different O
order O
( O
Streptosporangiales O
) O
compared O
to O
Streptomyces O
( O
Supplementary O
Table O
S1 O
) O
. O
This O
modification O
has O
only O
been O
found O
in O
the O
19-amino O
acid O
globular O
lanthipeptide O
actagardine O
( O
also O
known O
as O
gardimycin)452 O
and O
Ala(0)-actagardine O
, O
which O
differs O
from O
actagardine O
by O
a O
single O
additional O
Ala O
residue O
at O
the O
N-terminus O
( O
Figure O
42).453 O
The O
structure O
of O
actagardine O
was O
determined O
by O
a O
combination O
of O
Edman O
sequencing O
, O
MS O
, O
and O
NMR O
analysis,454−456 O
revealing O
that O
oxidation O
occurs O
site-selectivity O
in O
the O
D-ring.454 O
The O
genetic O
origin O
of O
sulfoxide O
formation O
was O
uncovered O
through O
a O
comparison O
of O
the O
gene O
clusters O
of O
actagardine O
and O
another O
lanthipeptide O
michiganin O
A,86 O
which O
is O
similar O
in O
structure O
to O
actagardine O
but O
lacks O
the O
sulfoxide.457 O
Annotation O
of O
the O
actagardine O
gene O
cluster O
from O
Actinoplanes O
garbadinensis O
ATCC O
31049 O
revealed O
the O
unique O
presence O
of O
a O
gene O
encoding O
a O
luciferase-like O
flavin-dependent O
monoxygenase O
termed O
garO. O
A O
ΔgarO O
mutant O
of O
A. O
garbadinensis O
ATCC O
31049 O
produced O
only O
deoxyactagardine O
and O
Ala(0)-deoxyactagardine O
. O
Two O
rRNA O
methyltransferases O
( O
AviRa O
and O
AviRb O
) O
and O
two O
antibiotic O
transporters O
( O
AviABC1 O
and O
AviABC2 O
) O
were O
clarified O
[ O
142 O
] O
( O
GB O
No. O
AF333038 B-bgc-accession
) O
. O
Methodology/Principal O
Findings O
The O
aim O
of O
these O
studies O
was O
to O
test O
if O
the O
production O
of O
mersacidin O
could O
be O
transferred O
to O
a O
naturally O
competent O
Bacillus O
strain O
employing O
genomic O
DNA O
of O
the O
producer O
strain O
. O
The O
analysis O
of O
the O
resulting O
mutant O
strain O
showed O
that O
gonP1 O
inactivation O
abolished O
PM100117/18 O
biosynthesis O
, O
thus O
confirming O
the O
implication O
of O
this O
cluster O
in O
the O
production O
of O
PM100117/18 O
( O
Fig. O
O O
2b).Fig O
Carbomycin O
is O
a O
16-membered O
macrolide O
antibiotic O
isolated O
originally O
from O
S. O
halstedii O
and O
the O
biosynthetic O
gene O
cluster O
was O
cloned O
from O
S. O
thermotolerans O
( O
GB O
No. O
The O
N-terminal O
leader O
sequence O
of O
P. O
acnes O
266 O
includes O
an O
additional O
23 O
amino O
acids O
in O
comparison O
to O
the O
other O
P. O
acnes O
strains O
. O
Genetic O
Organisation O
and O
Location O
of O
the O
Subtilomycin O
Biosynthetic O
Gene O
Cluster O
As O
previously O
noted O
, O
a O
single O
match O
was O
found O
between O
the O
primary O
amino O
acid O
sequence O
of O
the O
N-terminal O
part O
of O
subtilomycin O
and O
the O
5’end O
of O
a O
small O
gene O
( O
subA O
, O
171 O
nt O
) O
, O
located O
immediately O
upstream O
from O
ORFs O
that O
encode O
for O
proteins O
which O
have O
been O
shown O
to O
be O
involved O
in O
the O
processing O
of O
class O
I O
lantibiotics O
, O
such O
as O
LanB-like O
dehydratase O
and O
LanC-like O
cyclase O
modification O
enzymes O
( O
SubB O
and O
SubC O
, O
respectively O
, O
Figure O
4 O
) O
. O
Although O
rubrolone O
A O
has O
shown O
no O
significant O
biological O
activity O
in O
cytotoxicity O
and O
antimicrobial O
assays1 O
, O
we O
recently O
isolated O
rubrolone O
B O
( O
2 O
) O
( O
Fig. O
1 O
) O
as O
a O
new O
potentially O
cardioprotective O
rubrolone O
from O
the O
endophytic O
strain O
Streptomyces O
sp. O
KIB-H033 O
( O
S. O
sp. O
KIB-H033)5 O
. O
Individual O
retention O
time/UV O
– O
vis O
searches O
of O
the O
dominant O
15 O
secondary O
metabolites O
against O
our O
in-house O
pure O
metabolite O
library O
( O
> O
7,100 O
standards O
) O
also O
failed O
to O
provide O
a O
single O
known O
secondary O
metabolite O
, O
further O
suggesting O
the O
strain O
was O
a O
hitherto O
unaccounted O
species O
of O
Aspergillus O
. O
The O
six O
capsular O
types O
( O
K1 O
, O
K6 O
, O
K16 O
, O
K54 O
, O
K58 O
, O
K63 O
) O
that O
contain O
fucose O
as O
a O
structural O
unit O
possessed O
both O
gmd O
( O
gene O
encodes O
GDP-D-mannose O
4 O
, O
6-dehydratase O
) O
and O
wcaG O
( O
a O
nucleotide O
sugar O
epimerase/dehydratase O
with O
bifunctional O
activity O
: O
GDP-4-dehydro-6-deoxy-D-mannose O
epimerase O
and O
GDP-4-dehydro-6-L-deoxygalactose O
reductase O
) O
genes O
, O
which O
are O
responsible O
for O
conversion O
from O
GDP-D-mannose O
to O
GDP-L O
fucose32 O
. O
The O
A-503083s O
differ O
from O
the O
A-500359s O
by O
the O
presence O
of O
a O
2′-O-carbamoyl O
group O
, O
which O
has O
a O
minimal O
effect O
on O
TL1 O
inhibition O
and O
anti-TB O
activity O
. O
Purification O
and O
genetic O
characterization O
of O
gassericin O
E O
, O
a O
novel O
co-culture O
inducible O
bacteriocin O
from O
Lactobacillus O
gasseri O
EV1461 O
isolated O
from O
the O
vagina O
of O
a O
healthy O
woman O
Background O
Lactobacillus O
gasseri O
is O
one O
of O
the O
dominant O
Lactobacillus O
species O
in O
the O
vaginal O
ecosystem O
. O
Here O
, O
we O
report O
the O
identification O
of O
the O
previously O
uncharacterized O
nybomycin O
gene O
cluster O
from O
the O
marine O
actinomycete O
Streptomyces O
albus O
subsp O
. O
One O
knockout O
mutant O
( O
SOD_c20750 O
) O
showed O
the O
desired O
negative O
sodorifen O
phenotype O
. O
Bacillus O
mojavensis O
RO-H-1 O
ZP_10514325.1 B-bgc-accession
BmojR_010100015748 O
46 O
Unknown O
LanM O
12 O
. O
Albeit O
mild O
, O
this O
antibacterial O
activity O
is O
in O
line O
with O
other O
antifoulant O
natural O
products O
such O
as O
the O
diterpene O
dictyol O
C28 O
or O
the O
bromopyrrole O
oroidin29 O
. O
To O
determine O
whether O
the O
predicted O
genes O
were O
responsible O
for O
the O
biosynthesis O
of O
KK-1 O
, O
we O
performed O
heterologous O
production O
of O
KK-1 O
in O
Aspergillus O
oryzae O
by O
introduction O
of O
the O
cluster O
genes O
into O
the O
genome O
of O
A. O
oryzae O
. O
The O
biosynthetic O
gene O
cluster O
for O
landomycin O
E O
was O
cloned O
from O
S. O
globisporus O
[ O
360 O
] O
, O
and O
that O
for O
landomycin O
A O
was O
cloned O
from O
S. O
cyanogenus O
[ O
361 O
] O
. O
The O
adenylation O
domain O
sequences O
of O
McyB1 O
and O
McyC O
from O
Phormidium O
sp. O
LP904c O
might O
have O
gone O
through O
recombination O
events O
because O
their O
sequences O
group O
with O
sequences O
from O
different O
enzymes O
( O
Supplementary O
Figure O
S10 O
) O
. O
The O
growth O
inhibition O
activity O
in O
all O
cases O
was O
restored O
( O
Figure O
5 O
) O
. O
Neomycin O
( O
fradiomycin O
) O
, O
paromomycin O
, O
and O
lividomycin O
belong O
to O
4,5-disubstitued O
DOS-containing O
aminoglycoside O
antibiotics O
. O
Bioinformatic O
analysis O
of O
the O
substrate O
specificity O
of O
all O
nine O
adenylation O
domains O
indicated O
that O
the O
sequence O
of O
the O
NRPS O
modules O
is O
well O
collinear O
with O
the O
order O
of O
amino O
acids O
in O
pelgipeptin O
. O
Landomycin O
E O
is O
produced O
by O
S. O
globisporus O
, O
and O
shows O
antitumor O
activity O
which O
is O
only O
mildly O
affected O
by O
multidrug O
resistance-mediated O
drug O
efflux O
. O
Sequences O
of O
phzE O
genes O
, O
which O
are O
part O
of O
the O
phenazine O
biosynthetic O
pathway O
, O
were O
used O
to O
design O
one O
universal O
primer O
system O
and O
to O
analyze O
the O
ability O
of O
bacteria O
to O
produce O
phenazine O
. O
Alkaloid O
biosynthesis O
gene O
origins O
in O
selected O
hybrid O
endophyte O
strains O
a. O
E. O
can O
. O
Atypical O
Listeria O
innocua O
strains O
possess O
an O
intact O
LIPI-3 O
Background O
Listeria O
monocytogenes O
is O
a O
food-borne O
pathogen O
which O
is O
the O
causative O
agent O
of O
listeriosis O
and O
can O
be O
divided O
into O
three O
evolutionary O
lineages O
I O
, O
II O
and O
III O
. O
A O
manual O
genome O
annotation O
analysis O
identified O
this O
as O
the O
only O
type O
III O
PKS O
gene O
cluster O
in O
the O
genome O
, O
consistent O
with O
the O
antiSMASH O
results O
. O
Puwainaphycin O
F O
( O
4-methyl-Ahtea-PUW-F O
) O
, O
together O
with O
the O
congener O
of O
m/z O
1118.6 O
, O
were O
found O
to O
be O
dominant O
based O
on O
UV O
and O
MS O
detection O
, O
other O
variants O
were O
observed O
in O
trace O
amounts O
based O
on O
their O
MS O
signals O
( O
Figure O
3B O
) O
. O
Furthermore O
, O
a O
mutation O
was O
detected O
in O
plnF O
structural O
gene O
which O
has O
contributed O
to O
a O
longer O
bacteriocin O
peptide O
. O