From O the O amino O acid O sequence O similarity O of O Orf8 O to O UvrA O and O DrrC O , O it O is O suggested O a O role O as O a O transporter O or O the O excision O nucleotide O repair O system O in O the O resistance O [ O 133 O ] O ( O GB O No. O EU195114 B-bgc-accession ) O . O The O manC O gene O in O M4 O is O immediately O above O the O wbyO O GT O gene O that O adds O the O first O Man O residue O in O M4 O , O while O the O manC O gene O in O M2–M3 O is O between O the O GT1 O and O GT2 O genes O , O as O are O the O fcl O and O gmd O genes O needed O for O GDP-l-Fuc O and O GDP-l-Qui O . O The O pen O genes O were O flanked O by O genes O predicted O to O encode O a O cytochrome O P450 O monooxygenase O similar O to O a O gene O for O gibberellin O biosynthesis O in O F. O fujikuroi O ( O PC-05 O ) O [ O 27 O ] O and O a O Nmr-A O family O transcriptional O regulator O ( O PC-06 O ) O at O one O flank O and O two O cytochrome O P450s O ( O PC-20 O and O PC-21 O ) O and O an O aromatic O prenyl O transferase O ( O PC-22 O ) O at O the O other O . O The O biosynthetic O gene O cluster O contains O genes O for O an O acetyltransferase O and O two O ABC O transporters O , O which O may O play O a O role O in O self-resistance O [ O 397,398,399 O ] O ( O GB O Nos. O AB684620 B-bgc-accession and O AB684619 B-bgc-accession ) O . O The O Biosynthetic O Gene O Cluster O for O Andrastin O A O in O Penicillium O roqueforti O Penicillium O roqueforti O is O a O filamentous O fungus O involved O in O the O ripening O of O several O kinds O of O blue O cheeses O . O We O recently O identified O phthoxazolin O A O as O a O cryptic O metabolite O of O Streptomyces O avermitilis O that O produces O the O important O anthelmintic O agent O avermectin O . O Domain O organization O derived O from O the O pam O secondary O metabolite O gene O cluster O in O the O genome O of O Paenibacillus O larvae O DSM25430 O . O This O mutant O was O then O complemented O by O reintroduction O of O wild-type O swnK O , O restoring O swainsonine O production O in O several O independent O transformants O ( O Table O 1 O ) O . O Among O these O up-regulated O gene O clusters O , O pks6 O ( O SACE_4567 O - O 4577 O ) O showed O the O most O significantly O induced O expression O ( O Mean O : O about O 5.7 O folds O ; O Max O : O about O 21 O folds O ) O . O griseus]68 O % O srcmH O ABC O transporter O membrane O protein251SfrB O The O reciprocal O best O BLAST O hit O in O GenBank O for O the O XaPPTase O gene O of O X. O albilineans O is O the O XaPPTase O gene O from O X. O oryzae O . O The O cluster O contains O genes O for O transporters O ( O DynU6 O , O DynT8 O , O and O DynT10 O ) O , O dioxygenase O ( O DynE11 O ) O which O is O similar O to O bleomycin-resistance O protein O , O and O a O self-sacrifice O protein O ( O DynU16 O ) O . O Sequences O for O the O network O were O accessed O by O a O 5000 O sequence O return O , O two-iteration O Position-Specific O Iterated O BLAST O ( O PSI-BLAST O ) O of O the O lanthipeptide O synthetase O CylM O ( O accession O number O AAK67266.1 B-bgc-accession ) O . O B O Comparison O of O precursor O peptides O of O plantazolicin O ( O PlnA O ) O , O streptolysin O S O ( O SagA O ) O , O clostridiolysin O S O ( O ClosA O ) O with O putative O precursor O peptides O of O B. O intermedia O , O B. O hyodysenteriae O , O and O T. O mathranii O mathranii O A3 O ; O Cleavage O site O of O leader O and O core O peptide O in O bold O . O Results O A O potential O pelgipeptin O synthetase O gene O cluster O ( O plp O ) O was O identified O from O Paenibacillus O elgii O B69 O through O genome O analysis O . O Based O on O this O proposed O pathway O , O kanN O disruption O will O result O in O kanamycin O B O accumulation O , O whereas O based O on O the O linear O pathway O , O 2'-N-acetylparomamine O , O the O substrate O of O KanN O , O should O accumulate O . O According O to O the O recent O acarbose O biosynthesis O model O , O this O intermediate O undergoes O second O phosphorylation O by O either O the O 1-epi-valienol-7P-kinase O AcbU O and/or O the O hydrolase O AcbJ O before O being O further O nucleotidylated O ( O unproven O hypothesis O , O Wehmeier O and O Piepersberg O [ O 6 O ] O ) O . O sssA/sssA′/sssA1 O : O suicin O precursor O ; O sssE O , O sssF O , O and O sssG O : O immunity O proteins O ; O sssK O : O sensor O histidine O kinase O ; O sssM O : O synthetase O involved O in O lantibiotic O modification O ; O sssR O : O response O regulator O ; O sssT O : O ABC O transporter O . O Also O , O several O loline-alkaloid O producers O had O missing O or O inactive O decoration O genes O ( O lolN O , O lolM O , O and O lolP O ) O . O Mycotoxin O genes O are O expressed O as O a O biosynthetic O gene O cluster O ( O BGC O ) O . O salmonicida O A449 O 70 O YP_001141301 B-bgc-accession ORF4 O 5237.6016 O glycosyltransferase O , O group O 2 O family O protein O wbxS O Escherichia O coli O 48 O ACH97156 B-bgc-accession ORF5 O 6013.7269 O integral O membrane O protein O AefA/O-antigen O flippase O wzx O Salmonella O bongori O NCTC O 12419 O 70 O YP_004730750 B-bgc-accession ORF6 O 7300.9282 O epimerase/dehydratase O family O WbfY-like O protein O wbgZ O Aeromonas O hydrophila O subsp O . O mpz7 O and O mpz8 O show O similarity O ( O 74 O % O and O 60 O % O , O respectively O ) O to O monooxygenases O . O The O lividomycin O biosynthetic O gene O cluster O was O cloned O from O Streptomyces O lividus O as O a O 40 O kb O DNA O fragment O ( O GB O No. O AJ748832 B-bgc-accession ) O . O Geninthiocin O B O gene O cluster O is O flanked O at O both O ends O by O the O genes O encoding O ribosomal O and O translation-associated O proteins O ( O Figure O 4 O , O Table O 2 O ) O , O which O are O presumably O not O involved O in O geninthiocin O B O and O compound O 2 O biosynthesises O , O but O may O play O a O key O role O in O self-resistance O of O Streptomyces O sp. O YIM O 130001 O . O We O completed O genome O sequencing O and O gene O function O annotation O for O A. O ustus O 094102 O in O April O , O 2012 O . O Comparison O of O Strategies O to O Overcome O Drug O Resistance O : O Learning O from O Various O Kingdoms O Drug O resistance O , O especially O antibiotic O resistance O , O is O a O growing O threat O to O human O health O . O griseus]74 O % O srcmGIV O glycosyltransferase391PyrC4 O [ O Streptomyces O rugosporus]41 O % O srcmGII O glycosyltransferase391SsfS6 O [ O Streptomyces O sp. O SF2575]38 O % O srcmF O dTDP-4-keto-6-deoxy-D-glucose O epimerase199dTDP-4-keto-6-deoxy-D-glucose O epimerase O [ O Streptomyces O tsukubensis]78 O % O srcmOII O oxygenase550DacO2 O Similarity O of O the O cladoniamide O and O BE-54017 O gene O clusters O My O annotation O of O individual O genes O in O the O cladoniamide O ( O cla O ) O cluster O matches O well O with O the O independently O reported O BE-54017 O ( O abe O ) O cluster O [ O 13 O ] O . O Atrolysin O A O is O a O zinc O metalloproteinase O that O is O isolated O from O the O venom O of O the O western O diamondback O rattlesnake O , O Crotalus O atrox O . O As O the O genes O MpFasA2 O , O MpFasB2 O , O MpPKS5 O , O mppD O , O and O mppB O are O structural O genes O for O pigment O biosynthesis O and O mppR1 O is O a O regulatory O gene O ( O Balakrishnan O et O al. O 2013 O ) O , O the O polyketide O chromophores O and O media O fatty O acid O were O still O being O generated O during O fermentation O anaphase O under O high O glucose O stress O . O Remarkably O , O the O genetic O backbones O of O the O xantholysin O and O entolysin O NRPS O systems O also O bear O pronounced O phylogenetic O similarity O to O those O of O the O P. O putida O strains O PCL1445 O and O RW10S2 O , O albeit O generating O the O seemingly O structurally O unrelated O cyclic O lipopeptides O putisolvin O ( O undecapeptide O containing O a O cyclotetrapeptide O ) O and O WLIP O ( O nonapeptide O containing O a O cycloheptapeptide O ) O , O respectively O . O Edwards O et O al. O cloned O the O jamaicamide-producing O gene O cluster O as O a O 58 O kb O DNA O fragment O composed O of O 17 O open O reading O frames O [ O 50 O ] O ( O GB O No. O AY522504 B-bgc-accession ) O . O The O single O polysaccharide O repeat O bound O to O Und-PP O is O flipped O to O the O periplasmic O side O which O is O catalyzed O by O O-antigen O flippase O [ O 43 O ] O and O polymerized O by O the O Wzy-dependent O pathway O [ O 44 O ] O . O The O biosynthetic O gene O cluster O of O nocardicin O A O was O cloned O [ O 470 O ] O ( O GB O No. O AY541063 B-bgc-accession ) O . O In O contrast O , O the O ascE-deleted O strain O ( O ΔascE O ) O only O accumulated O 6 O ( O 2.32 O g/L O , O SI O Appendix O , O Table O S8 O ) O , O but O neither O 1 O nor O 2 O ( O Fig. O 3C O ) O . O This O regulatory O system O is O composed O of O two O essential O genes O , O gacA O and O gacS O , O encoding O a O sensor O kinase O and O response O regulator O , O respectively O , O which O control O the O production O of O multiple O secondary O metabolites O and O are O directly O related O to O pathogenesis O [ O 63 O ] O . O Four O other O genes O , O which O we O tentatively O designated O idtB-like O , O idtF-like O , O idtK-like O and O idtQ-like O , O were O embedded O in O AT-rich O repetitive O sequences O , O and O none O assembled O on O the O same O contigs O as O the O five O IDT O gene O orthologs O . O Numerous O rounds O of O gene-walking O outwards O from O these O known O regions O revealed O a O SXT O gene O cluster O in O L. O wollei O spanning O approximately O 36 O kb O ( O Figure O 2 O ) O and O encoding O thirty-one O genes O predicted O to O be O involved O in O the O biosynthesis O and O export O of O the O these O neurotoxins O ( O Table O 1 O ) O . O Further O investigation O of O this O metabolite O using O LC-ESI-HRMS O identified O its O m/z O as O 239.1102 O , O corresponding O to O the O [ O M O + O H]+ O of O thiotetromycin O ( O 2 O ) O ( O Fig. O 4B O ) O . O Both O these O genes O are O conserved O in O cluster O 34 O ( O Fig. O 2c O ) O , O suggesting O that O this O pigment O may O be O part O of O the O secondary O metabolite O content O of O Z. O tritici O , O which O may O account O for O the O light O red/pink O color O of O Z. O tritici O conidia O when O grown O on O rich O agar O . O No O ICZs O production O was O observed O in O LIW603 O , O indicating O that O spcR O is O a O positive O regulator O ( O Figure O 3a O , O panel O iv O ) O . O Therefore O , O we O speculated O that O 1 O was O derived O from O the O ribosomally O synthesized O and O post-translationally O modified O peptide O ( O RiPP O ) O biosynthetic O machinery20 O , O 21 O , O which O may O catalyse O the O formation O of O a O single O thiazoline O ring O from O cysteine O , O two O methyloxazole O rings O from O threonines O , O and O five O oxazole O rings O from O serines O , O via O dehydration O and O oxidation O . O Biological O Activity O Lactomycin O A O , O B O , O and O C O inhibit O cathepsin O B O with O IC50 O values O of O 4.5 O μM O , O 0.8 O μM O , O and O 1.6 O μM O , O respectively O . O Nocardicin O A O is O a O monocyclic O β-lactam O antibiotic O monobactam O , O and O was O isolated O from O Nocardia O uniformis O [ O 469 O ] O and O other O actinomycetes O . O Results O We O report O here O the O complete O sequence O of O a O 12.2 O kb O virulence O locus O of O Xanthomonas O oryzae O pv O . O Firstly O , O the O fatty O acid O ( O FA O ) O of O the O C10 O unit O , O which O is O used O as O the O precursor O material O , O is O synthesized O by O PKS O SwrEFG O and O other O undetermined O proteins O and O is O released O as O a O fatty O acyl-CoA. O Secondly O , O a O 17.7 O O O kb O swrA O encodes O the O core O W2-peptide O chain O ( O the O structure O of O the O CLP O with O a O 5-amino O acid O peptide O moiety O ) O , O which O contains O a O total O of O five O modules O G-52 O is O 6-methylsisomicin O and O G-418 O ( O geneticin O ) O is O structurally O similar O to O gentamicin O . O Antibiotic O susceptibility O of O S. O infantarius O LP90a O . O Gene O Target O Primer O Name O Primer O Sequence O 5′ O to O 3′ O Amplicon O Length/bp O Target O Species O Reference O TRI3 O 3_CONS O 1 O TGGCAAAGACTGGTTCAC O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI3 O 3_NIV_F O GTGCACAGAATATACGAGC O 840 O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI3 O 3_15ADON_F O ACTGACCCAAGCTGCCATC O 610 O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI3 O 3_3ADON_F O CGCATTGGCTAACACATG O 243 O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI12 O 12_CONS O CATGAGCATGGTGATGTC O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI12 O 12_NIV_F O TCTCCTCGTTGTATCTGG O 840 O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI12 O 12_15ADON_F O TACAGCGGTCGCAACTTC O 670 O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI12 O 12_3ADON_F O CTTTGGCAAGCCCGTGCA O 410 O F. O graminearum O , O F. O asiaticum O [ O 79 O ] O TRI3 O Tri3F971 O CATCATACTCGCTCTGCTG O 708for O 15-ADON O producers O only O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 80 O ] O Tri3F1325 O GCATTGGCTAACACATGA O 354for O 3-ADON O producers O only O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 80 O ] O Tri3R1679 O TT(A/G)TAGTTTGCA O TCATT(A/G)TAG O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 80 O ] O Gene O F O 3891 O GCTGTCAYAGYCAGAAGYTACGATG O 1200 O Fusarium O incarnatum O equiseti O species O complex O [ O 62 O ] O 3894 O AGAYATGBAGGACARGGCTTAGGGT O Fusarium O incarnatum O equiseti O species O complex O [ O 62 O ] O TRI1 O 1285 O GCGTCTCAGCTTCATCAAGGCAKCKAMTGAWTCG O 1200 O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1292 O CTTGACTTSMTTGGCKGCAAAGAARCGACCA O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O TRI3 O 1912 O TGTGTMGGYGCWGAGGCVATYGTTGG O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1914 O ACRGCAGCRGTCTGRCACATGGCGTA O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O TRI4 O 2576 O CCAATCAGYCAYGCTRTTGGGATACTG O 1800 O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 2578 O ACCCGGATTTCRCCAACATGCT O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O TRI5 O 1558 O GGCATGGTCGTGTACTCTTGGGTCAAGGT O 1300 O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1559 O GCCTGMYCAWAGAAYTTGCRGAACTT O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O TRI8 O 3904 O GACCAGNAYCACSGYCAACAGTTCAG O 1200 O Fusarium O incarnatum O equiseti O species O complex O [ O 62 O ] O 3906 O GAACAGCCRCTCCRWAACTATTGTC O Fusarium O incarnatum O equiseti O species O complex O [ O 62 O ] O TRI11 O 3895 O TWCCCCACAAGRAACAYCTYGARCT O 1300 O Fusarium O incarnatum O equiseti O species O complex O [ O 62 O ] O 3897 O TCCCASACTGTYCTSGCMAGCATCAT O Fusarium O incarnatum O equiseti O species O complex O [ O 62 O ] O TRI16 O 1472b O CCTCTCTCCCCTTGAYCAATTRAACTCT O NA O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1473b O CTTCCCGATCCCRAYGAGCCTCTTACAC O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1474b O GCCTTATMTKGGTAATGTCGTGCTKACA O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1475b O AAGAGGCTCRTYGGGATCGGGAAGGTTC O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1476b O CARCCGACGATGTMAGCACGACATTACC O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 1477b O CAATATACGGATACCGCACAAAGACTGG O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O TRI101 O 2 O 109 O CCATGGGTCGCRGGCCARGTSAA O NA O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O 178 O AACTCSCCRTCIGGYTTYTTNGGCAT O F. O graminearum O , O F. O sporotrichioides O [ O 30 O ] O TRI5 O HATri/F O CAGATGGAGAACTGGATGGT O 260 O F. O culmorum O , O F. O poae O , O F. O sporotrichioides O , O F. O graminearum O , O F. O sambucinum O [ O 81 O ] O HATri/R O GCACAAGTGCCACGTGAC O F. O culmorum O , O F. O poae O , O F. O sporotrichioides O , O F. O graminearum O , O F. O sambucinum O [ O 81 O ] O TRI11 O N11 O CTTGTCAGGCGGCACAGTAG O 643 O for O NIV-producers O F. O asiaticum O , O F. O mesoamericanum O , O F. O cortaderiae O , O F. O gerlachii O , O F. O meridionale O × O F. O asiaticum O , O F. O meridionale O , O F. O lunulosporum O , O F. O cerealis O , O F. O vorosii O , O F. O aethiopicum O , O F. O graminearum O , O F. O boothii O , O F. O asiaticum O , O F. O brasilicum O , O F. O austroamericanum O , O F. O culmorum O , O F. O pseudograminearum O [ O 74 O ] O 15D11 O AAGTATGGTCCAGTTGTCCGTATT O 424 O for O 3-ADON O producers O F. O asiaticum O , O F. O mesoamericanum O , O F. O cortaderiae O , O F. O gerlachii O , O F. O meridionale O × O F. O asiaticu O ) O , O F. O meridionale O , O F. O lunulosporum O , O F. O cerealis O , O F. O vorosii O , O F. O aethiopicum O , O F. O graminearum O , O F. O boothii O , O F. O asiaticum O , O F. O brasilicum O , O F. O austroamericanum O , O F. O culmorum O , O F. O pseudograminearum O [ O 74 O ] O 3D11 O GCAA O GTCTGGCGAGGCC O 342 O for O 15-ADON O producers O F. O asiaticum O , O F. O mesoamericanum O , O F. O cortaderiae O , O F. O gerlachii O , O F. O meridionale O × O F. O asiaticu O ) O , O F. O meridionale O , O F. O lunulosporum O , O F. O cerealis O , O F. O vorosii O , O F. O aethiopicum O , O F. O graminearum O , O F. O boothii O , O F. O asiaticum O , O F. O brasilicum O , O F. O austroamericanum O , O F. O culmorum O , O F. O pseudograminearum O [ O 74 O ] O 11R O TCAAAGGCCAGAGCA O ACCC O F. O asiaticum O , O F. O mesoamericanum O , O F. O cortaderiae O , O F. O gerlachii O , O F. O meridionale O × O F. O asiaticu O ) O , O F. O meridionale O , O F. O lunulosporum O , O F. O cerealis O , O F. O vorosii O , O F. O aethiopicum O , O F. O graminearum O , O F. O boothii O , O F. O asiaticum O , O F. O brasilicum O , O F. O austroamericanum O , O F. O culmorum O , O F. O pseudograminearum O [ O 74 O ] O TRI11 O Tri11-CON O GACTGCTCATGGAGACGCTG O NA O F. O graminearum O [ O 82 O ] O Tri11 O - O 3AcDON O TCCTCATGCTCG O GTGGACTCG O 334 O F. O graminearum O [ O 82 O ] O Tri11 O - O 15AcDON O TGGTCCAGT O TGTCCGTATT O 279 O F. O graminearum O [ O 82 O ] O Tri11-NIV O GTAGGTTCCATTGC O TTGTTC O 497 O F. O graminearum O [ O 82 O ] O TRI7 O GzTri7/f1 O GGCTTTACGACTCCTCAACAATGG O ∼160 O F. O graminearum O [ O 66 O ] O GzTri7/r1 O AGAGCCCTGCGAAAG(C/T)ACTGGTGC O F. O graminearum O [ O 66 O ] O TRI7 O Tri7F340 O ATCGTGTACAAGGTTTACG O 625 O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 80 O ] O Tri7R965 O TTCAAGTAACGTTCGACAAT O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 80 O ] O TRI13 O Tri13F O CATCATGAGACTTGTKCRGTTTGGG O 1075 O for O NIV O producers;799 O for O DON-producers O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 83 O ] O Tri13DONR O GCTAGATCGATTGTTGCATTGAG O 282 O for O DON O producers O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 83 O ] O Tri13R O TTGAAAGCTCCAATGTCGTG O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 83 O ] O Tri13NIVF O CCAAATCCGAAAACCGCAG O 312 O for O NIV O producers O F. O graminearum O , O F. O culmorum O , O F. O cerealis O [ O 83 O ] O The O deduced O protein O sequence O ( O Table O 2 O ) O from O cesH O ( O 31 O kDa O ) O showed O significant O ( O 58 O % O ) O identity O to O putative O hydrolases/acyltransferases O ( O COG0596 O ) O from O B. O cereus O group O members O . O carotovorum O PC1 O 52 O YP_003016893 B-bgc-accession ORF16 O 17986.19167 O glycosyl O transferase O group O 1 O wbxI O Methylobacter O tundripaludum O SV96 O 52 O ZP_08780763 B-bgc-accession ORF17 O 19164.19655 O acetyltransferase O wcaF O Methylobacter O tundripaludum O SV96 O 59 O ZP_08780764 B-bgc-accession ORF18 O 19648.20826 O O-antigen O polymerase O wzyE O Bacteroides O sp. O 2_1_7 O 29 O ZP_05287114 B-bgc-accession ORF19 O 20877.21968 O group O 1 O glycosyl O transferase O protein O wdaN O Dysgonomonas O gadei O ATCC O BAA-286 O 42 O ZP_08475479 B-bgc-accession ORF20 O 22444.23694 O O-antigen O flippase O wzxB O Shewanella O baltica O OS625 O 81 O EHC06312 B-bgc-accession ORF21 O 23691.24794 O aminotransferase O fdtB O Shewanella O baltica O OS195 O 81 O YP_001555451 B-bgc-accession ORF22 O 24796.25233 O dTDP-D-Fucp3N O acetyltransferase O fdtC O Shewanella O baltica O OS195 O 85 O YP_001555452 B-bgc-accession ORF23 O 25235.25657 O dTDP-6-deoxy-3,4-keto-hexulose O isomerase O fdtA O Shewanella O putrefaciens O 200 O 72 O ADV52549 B-bgc-accession ORF24 O 25668.26534 O glucose-1-phosphate O thymidylyltransferase O rmlA O Shewanella O putrefaciens O 200 O 79 O ADV52548 B-bgc-accession ORF25 O 26531.27619 O dTDP-glucose-4 O - O 6-dehydratase O rmlB O Aeromonas O hydrophila O 93 O AAM22544 B-bgc-accession ORFd O 28234.31383 O AcrB O protein O acrB O Aeromonas O hydrophila O subsp O . O The O chromatograms O of O Au8003 O reaction O product O ophiobolin O F O extracted O at O m/z O 358 O ( O a O ) O : O ( O I O ) O GGPP+IPP O , O ( O II O ) O FPP+IPP O , O ( O III O ) O GPP+IPP O , O ( O IV O ) O DMAPP+IPP O and O ( O V O ) O IPP O , O and O MS O Spectra O of O peak O 1 O ( O b O ) O ; O chromatograms O of O Au13192 O reaction O product O veridiene O extracted O at O m/z O 272 O ( O c O ) O : O ( O I O ) O FPP+IPP O , O ( O II O ) O GPP+IPP O , O ( O III O ) O DMAPP+IPP O , O ( O IV O ) O IPP O and O MS O Spectra O of O peak O 2 O ( O d O ) O ; O chromatograms O of O phosphatase O hydolysate O of O Au6298 O reaction O product O FPP O extracted O at O m/z O 222 O ( O e O ) O : O ( O I O ) O DMAPP+IPP O , O ( O II O ) O IPP O only O and O MS O Spectra O of O peak O 3 O ( O f O ) O . O For O myeD O , O which O encodes O an O amidohydrolase O , O a O mutant O ΔmyeD O containing O a O 1410 O bp O in-frame O deletion O within O this O gene O was O constructed O . O The O cmrA O and O cmrB O genes O encode O the O ABC O transporters O , O and O cmrX O encodes O a O UvrA-like O protein O of O UV O repair O nuclease O [ O 481 O ] O . O Peptide O chimeras O , O in O which O the O LctA O leader O peptide O was O appended O to O different O core O peptides O , O were O processed O at O varying O rates O by O the O LctTp O protease O domain O suggesting O some O role O of O the O core O sequence O on O substrate O processing.349 O Similarly O , O the O LtnTp O AMS O transporter O involved O in O biosynthesis O of O lacticin O 3147 O has O been O shown O to O secrete O various O noncognate O peptides O attached O to O the O LtnA2 O leader O peptide O and O to O remove O the O leader O peptide O in O the O process.351 O The O presence O of O the O class O II O lanthionine O synthetase O LtnM2 O ( O section O 4 O ) O was O not O required O for O transport O by O LtnTp O . O The O phylogenetic O analysis O of O ecdB O gene O present O within O the O gene O cluster O of O ECB O of O E. O rugulosa O NRRL O 11440 O is O close O proximity O to O ApdR O of O A. O nidulans O FGSC O A4 O , O which O acts O as O a O local O regulator O of O the O aspyridone O biosynthetic O gene O cluster O ( O Fig. O 1 O ) O . O A. O circinalis O 310F O insertion O excision O sequence O is O available O under O accession O number O EU603709 B-bgc-accession . O Both O the O A. O circinalis O AWQC131C O and O the O Aph O . O This O raised O the O question O whether O Mpz10 O may O catalyze O the O prenylation O of O phenazines O in O the O biosynthesis O of O JBIR-46 O , O -47 O , O and O -48 O . O It O has O been O observed O that O phpL O in O both O S. O viridochromogenes25 O and O S. O hygroscopicus17 O encodes O a O variant O ( O GXCXG O ) O thioesterase O motif O , O whereas O phpM O encodes O the O canonical O GXSXG O motif O . O However O , O information O about O other O enzymes O involved O in O kirromycin O biosynthesis O remained O scarce O . O Acarbose O kinase O , O GacK O , O and O three O transporters O , O GacX O , O GacY O , O and O Gac O W O , O are O present O within O the O cluster O . O Lincomycin O , O hormaomycin O , O tomaymycin O , O anthramycin O and O siberomycin O are O known O to O be O derived O from O a O common O intermediate O ( O 3-vinyl-2,3-pyrroline-5-carboxylic O acid O ) O , O and O to O constitute O similar O biosynthetic O gene O clusters O [ O 130 O ] O . O In O S. O epidermidis O genome O , O a O cluster O was O identified O on O plasmid O SAP106A O ( O Fig. O 6 O ) O , O containing O a O single O putative O precursor O peptide O ( O SAP_106A002 O ) O , O a O LanM O determinant O ( O SAP_106A003 O , O having O 22 O % O identity O with O HalM O ) O and O an O additional O LanP O protein O , O besides O the O C39 O protease O of O LanT O homolog O ( O SAP_106A001 O ) O . O hydrophila O ATCC O 7966 O 99 O YP_857382 B-bgc-accession ORF1 O 665 O .. O 1780 O capsular O polysaccharide O transport O protein O wza O Aeromonas O hydrophila O subsp O . O Specifically O , O in O C. O purpurea O 20.1 O and O A. O take O the O idtG O gene O encoding O the O first O pathway O step O was O either O absent O or O defective O . O The O fourth O ancestral O contributor O of O a O LOL O cluster O was O E. O amarillans O ( O or O a O close O relative O ) O , O with O which O the O LOL O cluster O in O E. O canadensis O and O the O LOL2 O cluster O in O N. O chisosum O grouped O in O clade O IV O . O Bmp7 O could O also O dimerize O two O molecules O of O 5 O , O albeit O with O reduced O catalytic O efficiency O , O to O generate O the O OH-BDE O product O 2,6-dibromo-4-(2,4,6-tribromophenoxy)phenol O ( O 14 O ) O ( O Fig. O 5b O and O Supplementary O Figs. O 23–24 O ) O . O Structure O – O activity O analyses O of O these O obtained O biosynthetic O intermediates O reveal O that O the O 3-keto O group O , O the O C1β O – O OH O , O and O the O aromatic O ring O C O are O important O for O the O inhibition O of O phosphatidylinositol O 3-kinase O . O jinggangensis O TL01 O ( O NC_020895 B-bgc-accession ) O , O Streptomyces O sp. O 303MFCol5.2 O ( O ARTR00000000 B-bgc-accession ) O , O Streptomyces O sp. O TOR3209 O ( O AGNH00000000 B-bgc-accession , O ( O Hu O et O O O al. O , O 2012 O ) O S. O albus O S4 O ( B-bgc-accession CADY00000000 O , O ( O Seipke O et O O O al. O , O 2011b O ) O ) O , O S. O albus O J1074 B-bgc-accession ( O NC_020990 O Streptomyces O sp. O SM8 O ( O AMPN00000000 B-bgc-accession ) O , O Streptomyces O sp. O NRRL2288 O ( O JX131329 B-bgc-accession ) O , O ( O Yan O et O O O al. O , O 2012 O ) O ) O , O Streptomyces O sp. O LaPpAH-202 O ( B-bgc-accession ARDM00000000 O ) O , O Streptomyces O sp. O CNY228 O ( B-bgc-accession ARIN01000033 O ) O The O phoRP O system O of O S. O filipinensis O was O cloned O and O transcriptionally O characterised O . O The O linear O cylindrocyclophane-related O cylindrofridins O 28‒30 O also O showed O antimicrobial O activity O in O the O low O µM O range O against O S. O aureus O Newman O ( O MICs O between O 3.0 O and O 11.3 O µM O ) O and O S. O pneumoniae O ( O MICs O in O the O range O 2.8‒12.1 O µM O ; O only O DSM-strains O ) O . O It O might O either O act O as O an O antibiotic O killing O bacterial O competitors O of O P. O larvae O in O the O honey O bee O larval O gut O or O it O might O act O as O a O toxin O helping O P. O larvae O to O kill O the O honey O bee O larvae O . O Bacillus O cereus O VD045 O Bioinformatic O analysis O of O the O draft O sequence O of O VD045 O revealed O the O presence O of O two O putative O lantibiotic O biosynthetic O clusters O ( O Fig. O 5 O ) O , O present O in O the O vicinity O , O on O the O three O contigs O ( O conti1.34 O , O 1.35 O and O 1.36 O ) O , O with O their O dedicated O transporters O and O immunity O genes O . O The O biological O activity O of O TTN O makes O it O an O important O lead O for O drug O discovery O , O whereas O its O rare O dialkylmaleic O anhydride O moiety O and O structural O similarity O to O tautomycin O ( O TTM O ) O , O another O potent O phosphatase O inhibitor O with O tremendous O medicinal O potential O , O draws O attention O to O novel O biosynthetic O chemistries O responsible O for O its O production O . O In O total O , O over O 7000 O capuramycin O analogs O were O synthesized O using O different O combinations O of O the O aforementioned O semisynthetic O approaches O and O screened O for O antimycobacterial O activity O [ O 63,64 O ] O , O ultimately O yielding O 24 O ( O named O RS-124922 O by O Sankyo O Co. O ; O renamed O to O SQ922 O by O Sequella O Inc. O after O licensing O the O library O ) O , O and O 28 O ( O RS-118641 O ; O SQ641 O ) O as O leads O [ O 65,66 O ] O . O The O sequences O of O the O 14 O A. O hydrophila O O O antigen O gene O clusters O have O been O deposited O in O the O GenBank O database O with O accession O numbers O MH449673 B-bgc-accession to I-bgc-accession MH449686 I-bgc-accession . O MMAR_2474 O protein O exceptionally O biosynthesized O methylated O alkyl-resorcinol O and O methylated O acyl-phloroglucinol O products O from O the O same O catalytic O core O . O The O biosynthetic O gene O cluster O was O cloned O as O a O 90 O kb O DNA O fragment O [ O 377,378 O ] O ( O GB O No. O AJ862840 B-bgc-accession ) O . O Furthermore O , O in O flowers O the O sesquiterpenes O compounds O were O observed O to O be O the O main O group O ( O 0.42 O % O ) O , O followed O by O one O diterpene O compound O ( O 0.01 O % O ) O . O GenBank O accession O numbers O : O M87280 B-bgc-accession for O Pantoa O agglomerans O , O CP001875 B-bgc-accession for O Pantoa O ananatis O , O and O LC317091 B-bgc-accession and O LC317092 B-bgc-accession for O Pseudomonas O sp. O strain O Akiakane O [ O 48 O ] O A O common O strategy O to O improve O the O yield O is O the O optimization O of O culture O conditions O [ O 73 O ] O . O Ergot O alkaloid O ( O EAS O ) O loci O In O the O scaffolded O assemblies O of O the O C. O purpurea O and O E. O festucae O Fl1 O genomes O , O and O the O scaffolded O E2368 O assembly O of O 2010 O - O 06 O , O the O EAS O genes O were O clustered O within O individual O supercontigs O ( O Figure O 6 O ) O . O These O three O genes O are O clustered O with O two O other O ORFs O that O encode O a O putative O extracellular O serine O protease O ( O subP O ) O and O an O ABC O transporter O ( O subT O ) O , O respectively O . O Streptomyces O viridochromogenes O DSM O 40736 O S. O viridochromogenes O is O a O producer O of O avilamycin O A O , O an O oligosaccharide O antibiotic O . O Although O clinical O detection O , O epidemiological O surveillance O , O and O tracing O of O pathogenic O bacteria O are O typically O done O using O serotyping O methods O that O rely O on O identifying O bacterial O surface O O O antigens O through O agglutination O reactions O with O antisera O , O molecular O methods O such O as O the O one O we O have O developed O may O be O quicker O and O more O cost O effective O . O We O amplified O the O Au13192 O coding O gene O , O which O contained O nine O exons O , O by O overlap O extension O PCR O ( O Supplementary O Fig. O S8 O , O Table O S8 O ) O using O A. O ustus O 094102 O genomic O DNA O as O template O . O Functional O characterization O of O terpene O synthase O genes O in O transgenic O A. O thaliana O leaves O To O test O A. O thaliana O in O a O transgenic O expression O system O for O the O production O of O Salvia O terpenes O , O the O following O genes O were O selected O from O S. O guaranitica O : O farnesyl O pyrophosphate O synthases O ( O FPPS O ) O , O geranyl O diphosphate O synthases O ( O GPPS O ) O and O (3S)-linalool O synthase O ( O LINS O ) O encoded O by O SgFPPS O , O SgGPPS O and O SgLINS O , O respectively O . O Gene O arrangement O , O functional O annotation O and O domain O structure O of O the O puw O gene O cluster O ( O 56.7 O kbp O ) O from O Cylindrospermum O alatosporum O CCALA O 988 O . O NMR O spectroscopic O investigations O in O comparison O to O the O educt O 1-hydroxyphenazine O confirmed O that O product O 3 O was O 1-hydroxy-4-dimethylallyl-phenazine O ( O Figure O 5 O ) O . O However O , O the O toxins O that O have O been O discussed O here O are O mainly O peptides O or O proteins O in O nature O , O except O for O tetrodotoxin O , O saxitoxin O , O lipophilic O alkaloids O , O and O batrachotoxin O . O The O biosynthetic O gene O cluster O was O cloned O [ O 72 O ] O ( O GB O No. O AM409314 B-bgc-accession ) O . O Interestingly O , O the O lps O biosynthetic O gene O cluster O of O Xcc O , O which O comprises O fifteen O genes O , O is O also O located O between O the O metB O and O etfA O genes O [ O 24 O ] O . O Anthracimycin O ( O 1 O ) O was O obtained O from O the O 4 O liter O fermentation O of O N. O kunsanensis O with O impurities O , O but O was O found O to O have O a O comparable O 1H O NMR O spectra O ( O Table O 1 O , O Supplementary O Figure O S1a O and O b O ) O as O our O anthracimycin O standard O that O we O purified O from O Streptomyces O sp. O T676 O . O In O Europe O Aphanizomenon O gracile O and O Cuspidothrix O issatschenkoi O are O the O only O known O producers O of O PSP O toxins O and O are O found O in O Southwest O and O Central O European O freshwater O bodies O . O Two O resistance-related O genes O , O otrA O and O otrB O , O are O present O at O both O ends O . O Thus O , O at O least O two O proteins O , O MccC O and O MccE O , O are O implicated O in O the O self-resistance O of O the O producing O strains O to O microcin O C. O Furthermore O , O MccF O also O involves O in O self-immunity O [ O 133,134 O ] O . O Whole O genome O shotgun O sequencing O was O also O conducted O on O the O genomes O of O the O clover O black O patch O pathogen O , O Slafractonia O leguminicola O ( O Alhawatema O et O al. O 2015 O ) O , O and O the O endophyte O , O Alternaria O oxytropis O ( O Pryor O et O al. O 2009 O ) O , O both O of O which O are O known O swainsonine O producers O in O the O order O Pleosporales O . O aurantiaca O DSM O 19603 O T O 196 O 368 O , O 257 O , O 219 O 2-hydroxy-phenazine O [42]c O 224 O 371 O , O 249 O , O 215 O phenazine-1-carboxylic O acid O [41]c O DSM O 50083 O T O Pseudomonas O chlororaphis O subsp O . O The O exact O function O of O these O proteins O , O MmpL4a O and O MmpL4b O , O is O not O known O in O detail O although O a O recent O study O performed O in O M. O tuberculosis O suggests O that O MmpL O proteins O ( O MmpL7 O ) O may O channel O the O polyketide O products O during O their O synthesis O by O the O polyketide O synthase O , O coupling O synthesis O and O export O [ O 28 O ] O . O The O samples O were O subjected O to O alcohol O series O dehydration O ( O 50–100 O % O ethanol O ) O and O then O chemically O dried O using O hexamethyldisilazane O Amplification O and O analysis O of O a O zeaxanthin O diglucoside O biosynthetic O gene O cluster O from O Pseudomonas O sp. O 102515 O As O described O above O , O P. O psychrotolerans O is O the O closest O relative O strain O to O Pseudomonas O sp. O 102515 O . O Notably O , O inactivation O of O rdmA O and O overexpression O of O rdmF O led O to O increased O production O of O RDM O A O by O ~ O O O 2.0-fold O and O ~ O O O 2.5-fold O , O reaching O yields O of O 155.3 O O O ± O O O 1.89 O and O 184.8 O O O ± O Table O 5 O Detected O LAP O gene O cluster O PhylumLocus O Tag O of O dehydrogenaseSimilar O to O † O Reference O # O Clostridium O botulinum O A2 O BoNT/A2 O Kyoto-FFirmicutes O CLM_0573 O clostridiolysin O S O Clostridium O botulinum O A O BoNT/A1 O ATCC O 19397Firmicutes O CLB_0528 O clostridiolysin O S O Clostridium O botulinum O A O BoNT/A1 O HallFirmicutes O CLC_0561 O clostridiolysin O S O Clostridium O botulinum O BoNT/B1 O OkraFirmicutes O CLD_0261 O clostridiolysin O S O Clostridium O botulinum O BoNT/A3 O Loch O MareeFirmicutes O CLK_3698 O clostridiolysin O S O Clostridium O botulinum O Ba4 O str O . O Kirromycin O shows O strong O antibacterial O activity O against O Streptococci O , O some O Enterococci O , O Neisseria O , O and O Haemophilus O , O but O not O to O S. O aureus O . O Staphylococcus O epidermidis O plasmid O SAP106A O YP_006939047.1 B-bgc-accession SAP106A_001 O 41 O Unknown O LanM O 14 O . O Lechevalieria O aerocolonigenes O myeP O ( O 75/83 O ) O Tryptophan O halogenase O mymQ O 411 O KynU O , O NP_250770.1 B-bgc-accession ( O 44/60 O ) O ; O Pseudomonas O aeruginosa O PAO1 O myeQ O ( O 51/64 O ) O Kynureninase O ( O KYN O ) O mymR3 O 691 O SBU95407.1 B-bgc-accession ( O 56/67 O ) O ; O Streptomyces O sp. O OspMP-M45 O myeR3 O ( O 57/68 O ) O SARP O family O transcriptional O regulator O orf-3 O 38 O None O predicted O in O NCBI O - O Unknown O Results O and O Discussion O Xanthomonad-inhibitory O Activity O of O P. O putida O BW11M1 O Screening O of O a O collection O of O Pseudomonas O strains O isolated O from O tropical O crop O roots O [ O 33 O ] O revealed O a O broad O xanthomonad-inhibitory O activity O for O the O banana O rhizosphere O isolate O P. O putida O BW11M1 O . O At O the O downstream O of O PKS O genes O , O the O genes O involved O in O the O biosynthesis O of O methoxymalonyl-CoA O from O glycerol O as O a O polyketide O precursor O ( O Chan O and O Thomas O 2010 O ) O were O also O found O from O BafAI O to O BafAV O . O Similar O to O other O lasso O peptides O , O LarA O is O the O precursor O peptide O which O is O processed O by O LarB O , O LarC O and O LarD O and O then O exported O by O the O transporter O LarF O [ O 73 O ] O . O Similarly O BAGEL4 O uses O HMM O to O detect O core O RiPP O encoding O genes O , O however O , O it O is O independent O from O the O genome O ORF O calls O , O enabling O it O to O better O detect O the O small O precursor O peptides O found O in O RiPP O encoding O gene O clusters O . O Brominated O derivatives O 1 O C38H57BrN2O8 O 747.3216 O d O 747.3226 O 1.3 O 88.0 O 11 O OCONH2 O CH3 O OCONH2 O CH2Br O Carbamidocyclophane O M O ( O 1 O ) O e O , O [ O t.s O . O ] O 2 O C38H56Br2N2O8 O 825.2336 O d O 825.2331 O 0.6 O 100 O 11 O OCONH2 O CH2Br O OCONH2 O CH2Br O Carbamidocyclophane O N O ( O 2 O ) O e O , O [ O t.s O . O ] O 3 O C38H56Br2N2O8 O 825.2340 O d O 825.2331 O 1.1 O 100 O 11 O OCONH2 O CH3 O OCONH2 O CHBr2 O Carbamidocyclophane O O O ( O 3 O ) O e O , O [ O t.s O . O ] O 4 O C38H55Br3N2O8 O 903.1425 O d O 903.1436 O 1.2 O 100 O 11 O OCONH2 O CH2Br O OCONH2 O CHBr2 O Carbamidocyclophane O P O ( O 4 O ) O e O , O [ O t.s O . O ] O 5 O C38H54Br4N2O8 O 981.0529 O d O 981.0541 O 1.2 O 99.1 O 11 O OCONH2 O CHBr2 O OCONH2 O CHBr2 O Carbamidocyclophane O Q O ( O 5 O ) O e O , O [ O t.s O . O ] O 6 O C37H56BrNO7 O 704.3173 O d O 704.3167 O 0.9 O 100 O 10 O OCONH2 O CH3 O OH O CH2Br O Carbamidocyclophane O R O ( O 6 O ) O e O , O [ O t.s O . O ] O 7 O C37H55Br2NO7 O 782.2266 O d O 782.2272 O 0.8 O 95.0 O 10 O OCONH2 O CH3 O OH O CHBr2 O Carbamidocyclophane O S O ( O 7 O ) O e O , O [ O t.s O . O ] O 8 O C37H54Br3NO7 O 860.1382 O d O 860.1378 O 0.5 O 95.6 O 10 O OCONH2 O CH2Br O OH O CHBr2 O Carbamidocyclophane O T O ( O 8) O e O , O [ O t.s O . O ] O 9 O C37H53Br4NO7 O 938.0499 O d O 938.0483 O 1.7 O 100 O 10 O OCONH2 O CHBr2 O OH O CHBr2 O Carbamidocyclophane O U O ( O 9 O ) O e O , O [ O t.s O . O ] O 37 O C37H56BrNO6 O 688.3207 O 688.3218 O 1.6 O 100 O 10 O OCONH2 O CH3 O H O CH2Br O Putative O new O [7.7]paracyclophane O f O H O CH3 O OCONH2 O CH2Br O 38 O C37H53Br2NO8 O 796.2059 O 796.2065 O 0.8 O 87.6 O 11 O OCONH2 O CH2OH O O O CHBr2 O Putative O new O [7.7]paracyclophane O f O OCONH2 O CHBrOH O O O CH2Br O O O CH2OH O OCONH2 O CHBr2 O O O CHBrOH O OCONH2 O CH2Br O 3940 O C37H55Br2NO6 O 766.2316 O 766.2322 O 766.2323 O 0.9 O 0.1 O 85.4 O 92.7 O 10 O 10 O OCONH2 O CH2Br O H O CH2Br O Putative O new O [7.7]paracyclophanes O f O OCONH2 O CH3 O H O CHBr2 O H O CH3 O OCONH2 O CHBr2 O 41 O C37H54Br3NO6 O 844.1424 O 844.1428 O 0.5 O 97.5 O 10 O OCONH2 O CH2Br O H O CHBr2 O Putative O new[7.7]paracyclophane O f O H O CH2Br O OCONH2 O CHBr2 O 42 O C37H53Br4NO6 O 922.0541 O 922.0534 O 0.8 O 100 O 10 O OCONH2 O CHBr2 O H O CHBr2 O Putative O new O [7.7]paracyclophane O f O 43 O C36H55BrO6 O 661.3077 O 661.3109 O 4.8 O 79.5 O 9 O OH O CH3 O OH O CH2Br O Putative O new O [7.7]paracyclophane O f O Chlorinated O derivatives O 10 O C38H57ClN2O8 O 703.3731 O 703.3731 O 0.0 O 100 O 11 O OCONH2 O CH3 O OCONH2 O CH2Cl O Carbamidocyclophane O D O ( O 10 O ) O e O , O [ O 5 O ] O 11 O C38H56Cl2N2O8 O 737.3332 O 737.3341 O 1.2 O 87.5 O 11 O OCONH2 O CH2Cl O OCONH2 O CH2Cl O Carbamidocyclophane O J O ( O 11 O ) O e O , O [ O 7 O ] O 12 O C38H56Cl2N2O8 O 737.3339 O 737.3341 O 0.3 O 88.9 O 11 O OCONH2 O CH3 O OCONH2 O CHCl2 O Carbamidocyclophane O C O ( O 12 O ) O e O , O [ O 5 O ] O 13 O C38H55Cl3N2O8 O 771.2966 O 771.2951 O 1.9 O 91.1 O 11 O OCONH2 O CH2Cl O OCONH2 O CHCl2 O Carbamidocyclophane O B O ( O 13 O ) O e O , O [ O 5 O ] O 14 O C38H54Cl4N2O8 O 805.2559 O 805.2562 O 0.4 O 92.4 O 11 O OCONH2 O CHCl2 O OCONH2 O CHCl2 O Carbamidocyclophane O A O ( O 14 O ) O e O , O [ O 5 O ] O 15 O C37H56ClNO7 O 660.3672 O 660.3673 O 0.2 O 96.7 O 10 O OCONH2 O CH3 O OH O CH2Cl O Carbamidocyclophane O I O ( O 15 O ) O e O , O [ O 7 O ] O 16 O C37H55Cl2NO7 O 694.3269 O 694.3283 O 2.0 O 89.2 O 10 O OCONH2 O CH3 O OH O CHCl2 O Carbamidocyclophane O K O ( O 16 O ) O e O , O [ O 7 O ] O 17 O C37H54Cl3NO7 O 728.2903 O 728.2893 O 1.2 O 86.4 O 10 O OCONH2 O CH2Cl O OH O CHCl2 O Carbamidocyclophane O L O ( O 17 O ) O e O , O [ O 7 O ] O 18 O C37H53Cl4NO7 O 762.2499 O 762.2503 O 0.5 O 100 O 10 O OCONH2 O CHCl2 O OH O CHCl2 O Carbamidocyclophane O F O ( O 18 O ) O e O , O [ O 6 O ] O 21 O C36H55ClO6 O 617.3626 O 617.3614 O 1.9 O 93.2 O 9 O OH O CH3 O OH O CH2Cl O Cylindrocyclophane O A1(21 O ) O e O , O [ O 8 O ] O 22 O C36H54Cl2O6 O 651.3219 O 651.3225 O 0.9 O 80.4 O 9 O OH O CH3 O OH O CHCl2 O Cylindrocyclophane O A2 O ( O 22 O ) O e O , O [ O 8 O ] O 23 O C36H53Cl3O6 O 685.2828 O 685.2835 O 1.0 O 84.8 O 9 O OH O CH2Cl O OH O CHCl2 O Cylindrocyclophane O A3 O ( O 23 O ) O e O , O [ O 8 O ] O 24 O C36H52Cl4O6 O 719.2434 O 719.2445 O 1.5 O 86.9 O 9 O OH O CHCl2 O OH O CHCl2 O Cylindrocyclophane O A4 O ( O 24 O ) O e O , O [ O 8 O ] O 31 O C36H55ClO5 O 601.3665 O 601.3665 O 0.5 O 99.3 O 9 O OH O CH3 O H O CH2Cl O Cylindrocyclophane O C1 O , O [ O 8 O ] O 32 O C36H54Cl2O5 O 635.3273 O 635.3276 O 0.5 O 95.6 O 9 O OH O CH3 O H O CHCl2 O Cylindrocyclophane O C2 O , O [ O 8 O ] O 33 O C36H53Cl3O5 O 669.2898 O 669.2886 O 1.8 O 100 O 9 O OH O CH2Cl O H O CHCl2 O Cylindrocyclophane O C3 O , O [ O 8 O ] O 34 O C36H52Cl4O5 O 703.2485 O 703.2496 O 1.6 O 100 O 9 O OH O CHCl2 O H O CHCl2 O Cylindrocyclophane O C4 O , O [ O 8 O ] O 44 O C37H56ClNO6 O 644.3724 O 644.3723 O 0.2 O 100 O 10 O OCONH2 O CH3 O H O CH2Cl O Putative O new O [7.7]paracyclophane O f O H O CH3 O OCONH2 O CH2Cl O 45 O C37H55Cl2NO7 O 694.3264 O 694.3283 O 2.7 O 84.3 O 10 O OCONH2 O CH2Cl O OH O CH2Cl O Putative O new O [7.7]paracyclophane O f O OH O CH3 O OCONH2 O CHCl2 O 46 O 47 O C37H55Cl2NO6 O 678.3330 O 678.3332 O 678.3334 O 0.6 O 0.3 O 100 O 100 O 10 O 10 O OCONH2 O CH2Cl O H O CH2Cl O Putative O new O [7.7]paracyclophanes O f O OCONH2 O CH3 O H O CHCl2 O H O CH3 O OCONH2 O CHCl2 O 48 O C37H54Cl3NO6 O 712.2952 O 712.2944 O 1.1 O 87.1 O 10 O OCONH2 O CH2Cl O H O CHCl2 O Putative O new O [7.7]paracyclophane O f O H O CH2Cl O OCONH2 O CHCl2 O 49 O C37H53Cl4NO6 O 746.2559 O 746.2554 O 0.3 O 100 O 10 O OCONH2 O CHCl2 O H O CHCl2 O Putative O new O [7.7]paracyclophane O f O 50 O C36H54Cl2O6 O 651.3223 O 651.3225 O 0.9 O 79.3 O 9 O OH O CH2Cl O OH O CH2Cl O Putative O new O [7.7]paracyclophane O f O 51 O C36H54Cl2O5 O 635.3275 O 635.3276 O 0.2 O 100 O 9 O H O CH3 O OH O CHCl2 O Putative O new O [7.7]paracyclophane O f O OH O CH2Cl O H O CH2Cl O 52 O C36H54Cl2O4 O 619.3323 O 619.3326 O 0.5 O 100 O 9 O H O CH2Cl O H O CH2Cl O Putative O new O [7.7]paracyclophane O f O H O CH3 O H O CHCl2 O Non-halogenated O derivatives O 19 O C38H58N2O8 O 669.4122 O 669.412 O 0.3 O 100 O 11 O OCONH2 O CH3 O OCONH2 O CH3 O Carbamidocyclophane O E O ( O 19 O ) O e O , O [ O 5 O ] O 20 O C37H57NO7 O 626.4064 O 626.4062 O 0.3 O 100 O 10 O OCONH2 O CH3 O OH O CH3 O Carbamidocyclophane O H O ( O 20 O ) O e O , O [ O 7 O ] O 25 O C36H56O6 O 583.3994 O 583.4004 O 1.7 O 83.1 O 9 O OH O CH3 O OH O CH3 O Cylindrocyclophane O A O ( O 25 O ) O e O , O [ O 4 O ] O 35 O C36H56O5 O 567.4004 O 567.4055 O 2.3 O 89.7 O 9 O OH O CH3 O H O CH3 O Cylindrocyclophane O C O , O [ O 9 O ] O 36 O C36H56O4 O 551.4102 O 551.4106 O 0.7 O 100 O 9 O H O CH3 O H O CH3 O Cylindrocyclophane O F O , O [ O 9 O ] O 53 O C37H55NO7 O 624.3888 O 624.3906 O 2.9 O 88.7 O 11 O OCONH2 O CH3 O O O CH3 O Putative O new O [7.7]paracyclophane O f O 54 O C37H57NO6 O 610.4113 O 610.4113 O 0.0 O 100 O 10 O OCONH2 O CH3 O H O CH3 O Putative O new O [7.7]paracyclophane O f O a O Abbreviations O : O Meas O . O Genome O mining O for O orthologs O of O LtnJ O uncovered O three O other O putative O dehydrogenases;421 O SacJ O , O which O is O located O in O the O Staphylococcus O aureus O C55 O operon O for O the O biosynthesis O of O staphylococcin O C55,427 O a O lanthipeptide O predicted O to O be O very O similar O in O structure O to O lacticin O 3147 O ; O PenN O from O Pediococcus O pentosaceus O FBB61 O , O which O is O required O to O access O bioactive O pediocin O A;428 O and O NpnJ O ( O originally O named O NstJ),421 O which O is O from O a O cyanobacterium O Nostoc O punctiforme O PCC73102 O cluster O that O contains O a O LanM O but O does O not O produce O lanthipeptides O as O the O precursor O peptides O ( O NpnA O ) O do O not O contain O cysteines.368 O LtnJ O , O NpnJ O , O PenN O , O and O SacJ O share O many O conserved O residues O including O three O or O four O conserved O Cys O residues O predicted O to O bind O zinc O ( O NpnJ O has O three O of O the O conserved O Cys O , O LtnJ O , O SacJ O , O and O PenN O have O all O four).429 O These O four O enzymes O have O been O classified O as O LanJA-type O dehydrogenases O based O on O their O zinc O and O NADPH-dependence.425 O The O dehydrogenase O activity O for O PenN O and O SacJ O was O demonstrated O in O vivo O with O the O lacticin O 3147 O substrate O , O confirming O their O function O and O suggesting O that O these O enzymes O do O not O require O a O leader O peptide O as O a O non-native O substrate O was O accepted.429 O Specifically O , O supplementing O the O ΔltnJ O strain O described O above O with O penN O restored O d-Ala O formation O in O both O Ltnα O and O Ltnβ O , O whereas O supplementation O with O sacJ O restored O d-Ala O formation O in O Ltnα O but O not O in O Ltnβ O . O The O whole O DNA O sequence O of O the O S. O venezuelae O genome O was O determined O , O including O the O chloramphenicol O biosynthetic O gene O cluster O [ O 420 O ] O ( O GB O Nos. O FR845719 B-bgc-accession and O AF262220 B-bgc-accession ) O . O Two O putative O halogenase O genes O , O mymM O and O mymP O , O were O found O in O S. O olivaceus O FXJ8.012Δ1741 O , O while O only O one O candidate O , O myeP O , O was O present O in O S. O sp. O FXJ1.235 O . O Unlike O the O ast O cluster O , O where O there O are O multiple O HAD-like O enzymes O encoded O ( O one O terpene O synthase O and O two O phosphatases O ) O , O the O putative O nanangenine O cluster O only O encodes O one O such O enzyme O , O FE257_006542 O . O Results O and O discussion O Biosynthetic O origin O of O the O polycyclic O scaffold O of O TXNs O TXN-A O was O originally O isolated O from O S. O bottropensis O DO-45 O with O the O isolation O of O 20 O mg O from O an O 18 O L O fermentation O broth;1,2 O however O this O titer O was O not O efficient O enough O for O biosynthetic O studies O . O Swainsonine O is O an O indolizidine O alkaloid O that O is O produced O by O insect O and O plant O pathogens O and O symbionts O belonging O to O the O order O Hypocreales O , O Chaetothyriales O , O Onygenales O , O Pleosporales O , O and O Leotiomycetes O . O The O cluster O houses O genes O for O 3-hydroxybutyryl-CoA O dehydrogenase O ( O tueI O ) O and O for O a O carboxylating O enoyl-thioester O reductase O ( O tueH O ) O bolstering O the O identification O of O the O cluster O as O governing O production O of O a O butyrate O unit-containing O polyketide.38 O The O suitability O of O our O primer O set O to O detect O phenazine O genes O in O Pseudomonas O species O was O further O demonstrated O by O performing O a O database O search O that O matched O perfectly O several O phenazine O genes O , O e.g. O , O P. O chlororaphis O ( O L48339 B-bgc-accession ) O , O Pseudomonas O sp. O M18 O ( O FJ494909 B-bgc-accession ) O , O P. O aeruginosa O ( O FM209186 B-bgc-accession , O CP000744 B-bgc-accession , O CP000438 B-bgc-accession , O AE004091 B-bgc-accession , O AF005404 B-bgc-accession ) O . O Different O phycotoxins O cause O distinct O poisoning O events O . O Results O and O Discussion O Identification O of O the O Conglobatin O Biosynthetic O Gene O Cluster O Conglobatin O is O a O symmetrical O polyketide O macrodiolide O , O and O inspection O of O its O structure O suggests O that O its O assembly O is O governed O by O an O NRPS/PKS O biosynthetic O gene O cluster O . O = O Epichloë O canadensis O , O FaTG-2 O = O Neotyphodium O species O FaTG-2 O , O N. O chi O = O Neotyphodium O chisosum O , O N. O coe O . O Ouabain O and O digoxin O are O the O typical O endogenous O cardiac O glycosides O . O Phylogeny O of O three O LOL O genes O , O lolC O , O lolN O , O and O lolP. O Pseudogenes O of O lolC O and O lolP O are O labeled O lolCψ O and O lolPψ O , O respectively O . O The O leader O sequence O is O removed O during O the O transport O out O of O the O cell O by O the O bifunctional O enzyme O LanT O ( O transporter O with O N-terminal O protease O ) O [31].Table O 3 O Detected O putative O lanthipeptide O gene O clusters O PhylumLanthipeptide O classLocus O tag O of O the O lanthipeptide O modifying O enzyme O LanSimilar O to O † O Reference O # O Clostridium O cellulovorans O 743B O , O ATCC O 35296FirmicutesI O Clocel_4251 O Clocel_4256 O Clocel_4262 O Clostridium O kluyveri O DSM O 555FirmicutesI O CKL_3505 O Bifidobacterium O longum O DJO10AActino-bacteriaII O BLD_1651 O [ O 25 O ] O Clostridium O acetobutylicum O ATCC O 824FimicutesII O CA_C0082 O Clostridium O acetobutylicum O DSM O 1731FimicutesII O SMB_G0083 O Clostridium O acetobutylicum O EA O 2018FimicutesII O CEA_G0073 O Clostridium O beijerinckii O NCIMB O 8052FimicutesII O Cbei_4586 O [ O 25 O ] O Clostridium O botulinum O H04402 O 065FimicutesII O H04402_00616 O H04402_00617 O lichenicidin O Clostridium O cellulovorans O 743B O , O ATCC O 35296FimicutesII O Clocel_0875 O lichenicidin[32]II O Clocel O _ O 4225 O Clocel_4228 O Caldicellulosiruptor O lactoaceticus O 6A O , O DSM O 9545FimicutesII O Calla_2060 O Caldicellulosiruptor O bescii O Z-1320 O , O DSM O 6725FimicutesII O Athe_1107 O lichenicidin[32 O ] O Caldicellulosiruptor O kristjanssonii O 177R1B O , O DSM O 12137FimicutesII O Calkr_0299 O Bifidobacterium O longum O infantis O JCM O 1222 O , O ATCC O 15697Actino-bacteriaIV O BLIJ_0470 O Propionibacterium O acnes O TypeIA2 O P.acn17Actino-bacteriaIV O TIA2EST22_11370 O †Cluster O shows O similarities O to O characterized O RiPP O cluster O ; O # O Cluster O was O previously O detected O by O genome O mining O approaches O . O In O S. O thiolactonus O , O in-frame O deletions O were O introduced O into O the O cluster-associated O stuH O , O a O gene O encoding O a O carboxylating O enoyl-thioester O reductase O ( O ccr O ) O ( O Fig. O S8† O ) O ; O and O also O into O stuB O , O the O gene O encoding O the O iterative O PKS-NRPS O ( O Fig. O S9† O ) O . O The O resulting O DNA O fragment O was O sequenced O , O and O the O sequence O deposited O in O the O GenBank O under O accession O number O MH532527 B-bgc-accession . O [ O Dactylosporangium O sp. O SC14051]45 O % O srcmLII O acyl O CoA O ligase536SsfL2 O The O sxtA O encodes O a O polyketide O synthase O in O saxitoxin-producing O cyanobacterium O Anabaena O circinalis O . O In O addition O to O ergot O alkaloids O , O Claviceps O species O can O also O produce O a O second O class O of O neurotropic O alkaloids O , O the O indole-diterpenes O ( O “ O tremorgens O ” O ) O , O known O to O cause O staggers O in O livestock O [ O 2 O ] O . O The O PKS O AnaG O supposedly O adds O an O acetate O unit O without O reduction O and O performs O a O methylation O . O In O order O to O determine O the O exact O boundary O of O the O cluster O , O the O genes O on O both O ends O of O the O cluster O V O ( O g3262–g3284 O ) O were O individually O disrupted O . O A O corresponding O cluster O of O putative O Lls O homologs O , O all O of O which O are O predicted O to O encode O biosynthetic O enzymes O , O were O also O identified O [ O 8 O ] O ; O LlsB O ( O 99 O % O in O the O case O of O all O three O strains O ) O , O LlsY O ( O 95.4 O % O FH2051 O , O 95 O % O SLCC6466 O and O SLCC6294 O ) O and O LlsD O ( O 98.4 O % O FH2051 O , O 98 O % O SLCC6466 O and O SLCC6294 O ) O . O Protease O activity O has O also O been O established O for O the O N-terminal O 150 O amino O acids O of O BovTp O , O which O removed O the O leader O peptide O from O mBovA O to O generate O the O lantibiotic O bovicin O HJ50 O ( O Figure O 21).350 O Based O on O the O sequence O similarity O to O other O AMS O transporters O and O to O papain-like O proteases O , O the O catalytic O triad O of O the O protease O domain O of O LctTp O was O proposed O to O consist O of O Asp106 O , O His90 O , O and O Cys12 O . O For O instance O , O close O to O the O upstream O boundary O reside O genes O acnA O and O acnB O ; O all O of O these O encode O for O hypothetical O proteins O . O The O pathway O is O composed O of O the O following O steps O : O ( O i O ) O transfer O of O a O glycerol O moiety O from O d-1,3-biphosphoglycerate O to O a O discrete O acyl O carrier O protein O ( O ACP O ) O ( O e.g. O , O Tmn7a O in O tetronomycin O biosynthesis O [ O 24 O ] O , O a O homologue O of O AbmA3 O ) O as O catalyzed O by O a O glyceryl-S-ACP O synthase O ( O e.g. O , O RkE O in O RK-682 O biosynthesis O [ O 25 O ] O , O a O homologue O of O AbmA2 O ) O , O leading O to O glyceryl-S-ACP O ; O ( O ii O ) O binding O of O the O glyceryl-S-ACP O to O the O nascent O polyketide O chain O and O detachment O of O the O polyketide O from O the O PKS O , O generating O the O linear O hydroxymethyl O tetronate O ring O as O catalyzed O by O a O ketoacyl-S-ACP O synthase O ( O e.g. O , O RkD O in O RK-682 O biosynthesis O [ O 26 O ] O , O a O homologue O of O AbmA1 O ) O ; O ( O iii O ) O exomethylene O installation O via O an O acylation-elimination O process O accomplished O by O an O acyltransferase O E2 O component O of O 2-oxoacid O dehydrogenase O multienzymes O ( O e.g. O , O Agg4 O in O agglomerin O biosynthesis O [ O 27 O ] O and O QmnD3 O in O quartromicin O biosynthesis O [ O 28 O ] O , O homologues O of O AbmA4 O ) O and O an O α/β O hydrolase O fold O protein O ( O e.g. O , O Agg5 O in O agglomerin O biosynthesis O [ O 27 O ] O and O QmnD4 O in O quartromicin O biosynthesis O [ O 28 O ] O , O homologues O of O AbmA5 O ) O . O The O sequence O of O the O mersacidin O gene O cluster O has O the O accession O number O AJ250862 B-bgc-accession . O This O modification O was O first O identified O through O structural O elucidation O of O epidermin O from O S. O epidermidis O Tü3298,173 O and O subsequent O heterologous O expression O of O the O epiD O gene O from O the O corresponding O biosynthetic O cluster O produced O a O yellow O flavoprotein O that O was O presumed O to O function O in O AviCys O formation.172 O Reconstitution O studies O of O EpiD O , O using O either O the O precursor O peptide O EpiA283 O or O a O synthetic O peptide O corresponding O to O the O epidermin O core,284 O indicated O a O loss O of O 46 O Da O from O the O substrate O corresponding O to O the O loss O of O CO2 O and O two O H O atoms O . O We O tested O the O antimicrobial O activity O of O 37 O bacteriocinogenic O LAB O , O isolated O from O food O and O other O sources O , O against O clinical O S. O pneumoniae O strains O . O By O sequencing O the O O-AGC O of O non-reacting O strains O , O we O showed O that O the O serogroups O O1 O and O O2 O are O encoded O by O different O sets O of O O-antigen O encoding O genes O and O identified O potentially O new O serotypes O . O This O study O Lolium O sp. O ( O 6x O ) O – O – O TD O nt O NFL O NFL O FaTG-3 O e4074 O [ O 11 O ] O Lolium O sp. O ( O 6x O ) O – O – O – O nt O NFL O NFL O NML O NAL O FaTG-4 O e4305 O PI O 598863 O Lolium O sp. O ( O 10x O ) O ERV O nt O TD O nt O – O – O Neotyphodium O aotearoae O e899 O = O MYA-1229 O [ O 27 O ] O Echinopogon O ovatus O – O nt O TD O nt O NFL O NFL O N. O chisosum O e3609 O = O ATCC O 64037 O [ O 28 O ] O Achnatherum O eminens O – O nt O – O nt O NFL O nt O N. O coenophialum O e19 O = O ATCC O 90664 O [ O 11 O ] O Lolium O arundinaceum O ERV O ERV O CC O – O nt O NFL O NFL O NML O NAL O NANL O N. O coenophialum O e4163 O PI O 422777 O Lolium O sp. O ( O 4x O ) O ERV O ERV O TD O nt O NFL O NFL O NML O NAL O NANL O N. O coenophialum O e4309 O PI O 598903 O Lolium O arundinaceum O – O – O TD O nt O NFL O NANL O N. O funkii O e4096 O [ O 28 O ] O Achnatherum O robustum O CC O CC O TD O nt O – O – O N. O gansuense O var O . O ( O a O ) O The O vlm O gene O cluster O from O S. O tsusimaensis O including O two O critical O nonribosomal O peptide O synthetase O ( O NRPS O ) O genes O ( O vlm1 O and O vlm2 O ) O and O five O ORFs O [ O 12 O ] O , O and O the O position O of O nine O regions O targeted O by O DNA O amplification O ( O amplicons O A O to O I O ; O also O see O Figure O S1 O ) O . O Results O Here O , O we O present O the O complete O genome O sequence O of O Actinoplanes O sp. O SE50/110 O [ O GenBank O : O CP003170 B-bgc-accession ] O , O the O first O publicly O available O genome O of O the O genus O Actinoplanes O , O comprising O various O producers O of O pharmaceutically O and O economically O important O secondary O metabolites O . O Thus O , O the O partial O deletion O of O lomo10 O might O not O affect O the O expression O of O other O genes O , O such O as O lomo11 O . O AscR O possessed O a O Zn2Cys6 O binuclear O cluster O for O DNA O binding O and O was O presumably O a O transcription O regulator O . O The O order O of O the O genes O ( O anaA-anaG O ) O in O ana O gene O clusters O from O NIVA-CYA O 711 O ( O Germany O ) O and O CAWBG02 O ( O New O Zealand O ) O were O identical O to O the O three O other O C. O issatschenkoi O strains O CHABD3 O ( O China O ) O , O RM-6 O and O LBRI48 O ( O Japan O ) O [ O 14 O ] O . O Therefore O , O we O expected O that O TESmlC O domain O , O which O recognizes O the O acyl O group O derived O from O polyketide O and O the O hydroxyl O group O of O threonine O as O a O nucleophile O , O would O accept O the O intermediate O from O the O new O construct O and O catalyze O macrocyclization O . O Numerous O functionalised O strobilurin O natural O products O are O known6 O in O which O the O aromatic O ring O is O hydroxylated O ( O e.g. O strobilurin O F O 5)7 O and O chlorinated O ( O e.g. O strobilurin O B O 6)1 O and O the O hydroxyl O groups O can O be O , O in O turn O , O methylated O or O prenylated O ( O e.g. O strobilurin O G O 7)7,8 O . O The O antibacterial O bioassay O indicated O that O all O the O samples O , O with O the O exception O for O those O of O M1154::pCHW301 O and O M1154::pCHW301ΔminR O , O lack O bioactivities O against O the O Bacillus O subtilis O indicator O strain O ( O Figure O O O 2B O ) O orf29 O , O which O is O located O at O another O end O of O the O cluster O , O may O also O be O involved O in O the O self-resistance O by O transporting O the O drug O [ O 336 O ] O . O This O proves O that O gene O cluster O no. O 9 O , O designated O alp-cluster O ( O Table O 2 O ) O , O is O indeed O responsible O for O the O biosynthesis O of O alpiniamides O . O Salivaricin O G32 O , O a O Homolog O of O the O Prototype O Streptococcus O pyogenes O Nisin-Like O Lantibiotic O SA-FF22 O , O Produced O by O the O Commensal O Species O Streptococcus O salivarius O Salivaricin O G32 O , O a O 2667 O O O Da O novel O member O of O the O SA-FF22 O cluster O of O lantibiotics O , O has O been O purified O and O characterized O from O Streptococcus O salivarius O strain O G32 O The O HPLC O analysis O of O extract O from O wild O strain O showed O the O typical O peak O for O bafilomycin O B1 O but O no O peak O for O bafilomycin O A1 O . O This O pronounced O analogy O suggested O that O a O non-ribosomal O peptide O is O the O likely O product O of O the O xtl-encoded O NRPSs O . O The O fifth O gene O , O wzt O , O encodes O a O predicted O 436 O amino O acid O long O protein O . O Detection O of O Phenazines O in O the O phzE O Positive O Strains O To O demonstrate O the O synthesis O of O phenazines O in O all O phzE O positive O strains O , O cultures O of O these O strains O were O extracted O and O analyzed O by O HPLC-UV/MS O analyses O . O The O pattern O of O gene O differences O between O serotypes O being O grouped O in O the O middle O of O the O gene O cluster O has O also O been O observed O in O polysaccharide O gene O clusters O of O other O species O such O as O Acinetobacter O baumannii O ( O Hu O et O O O al. O 2013 O Enzyme O analyses O and O metabolite O extractions O from O two O hapalindole-producing O Fischerella O strains O indicate O the O presence O of O cis O and O trans O indole-isonitriles O as O biosynthetic O intermediates O in O the O early O steps O of O the O pathway O . O Gene O Size O ( O bp/aa O ) O Proposed O Function O Orthologue O identified O by O BLASTP O search O Identity/Similarity O [ O % O ] O orf1 O 1638/545 O ATPase O SZN_31494 O , O Streptomyces O zinciresistens O 85/89 O mpz1 O 486/161 O Phenazine O biosynthesis O protein O PhzB O , O Pseudomonas O fluorescens O 69/81 O mpz2 O 1224/407 O 3-Deoxy-D-arabino-heptulosonate O 7-phosphate O synthase O PhzC O , O Pseudomonas O fluorescens O 49/61 O mpz3 O 573/190 O 2,3-Dihydro-3-hydroxy-anthranilate O synthase O PhzD O , O Pseudomonas O fluorescens O 56/73 O mpz4 O 1941/646 O 2-Amino-2-desoxy-isochorismate O synthase O PhzE O , O Pseudomonas O fluorescens O 54/69 O mpz5 O 1167/388 O trans-2,3-Dihydro-3-hydroxyanthranilate O isomerase O PhzF O , O Pseudomonas O fluorescens O 60/70 O mpz6 O 636/211 O FMN-dependent O oxidase O PhzG O , O Pseudomonas O fluorescens O 48/65 O mpz7 O 1623/540 O Monooxygenase O ChnB O , O Brachymonas O petroleovorans O 56/74 O mpz8 O 330/109 O Monooxygenase O TcmH O , O Streptomyces O glaucescens O 48/60 O mpz9 O 1215/404 O Flavin O dependent O hydroxylase O PhzS O , O Pseudomonas O aeruginosa O 51/62 O mpz10 O 996/331 O Prenyltransferase O O3I_007965 O , O Nocardia O brasiliensis O ATCC O 700358 O 33/51 O mpz11 O 1020/339 O Mevalonate O kinase O MK O , O Streptomyces O cinnamonensis O 57/71 O mpz12 O 1044/347 O Mevalonate O diphosphate O decarboxylase O Mcl8 O , O Streptomyces O sp. O CNH189 O 73/80 O mpz13 O 1140/379 O Phosphomevalonate O kinase O PMK O , O Streptomyces O sp. O KO-3988 O 57/70 O mpz14 O 1092/363 O Isopentenyl O diphosphate O isomerase O Mcl6 O , O Streptomyces O sp. O CNH189 O 74/86 O mpz15 O 1068/355 O 3-Hydroxy-3-methylglutaryl O CoA O reductase O HMGR O , O Streptomyces O anulatus O 80/89 O mpz16 O 1185/394 O 3-Hydroxy-3-methylglutaryl O CoA O synthase O Mcl4 O , O Streptomyces O sp. O CNH189 O 76/87 O orf18 O 1212/403 O integrase O catalytic O subunit O OCO_06920 O , O Mycobacterium O intracellulare O MOTT-02 O 48/63 O The O six O genes O mpz11 O - O 16 O show O obvious O similarity O ( O 89 O - O 70 O % O ) O to O genes O coding O for O enzymes O of O the O mevalonate O pathway O , O corresponding O to O the O fact O that O the O isoprenoid O moieties O of O JBIR-46 O , O -47 O , O and O -48 O originate O from O the O mevalonate O pathway O [ O 14 O ] O . O Two O members O of O the O mmpL O family O , O a O group O of O genes O encoding O large O membrane O proteins O , O are O also O required O for O GPL O biosynthesis O [ O 19,26 O ] O . O In O general O , O the O four O tested O recombinant O A O domains O were O found O to O activate O selectively O predicted O amino O acids O , O experimentally O confirming O the O speculation O that O the O plp O gene O cluster O involved O in O pelgipeptin O biosynthesis O . O Anti-SMASH O software13 O identified O two O potential O PKS-encoding O BGCs O in O each O genome O ( O Supplementary O Figure O O O 6 O ) O Viomycin O and O capreomycin O are O tuberactinomycin O group O antibiotics O used O for O the O treatment O of O multi-resistant O tuberculosis O . O Examination O of O the O resultant O strain O revealed O that O the O L. O innocua O LIPI-3 O is O indeed O functional O as O evidenced O by O a O clear O haemolytic O phenotype O on O Columbia O blood O agar O ( O Figure O O O 3 O ) O Holomycin O is O also O produced O by O Streptomyces O clavuligerus O [ O 526,527 O ] O . O Distribution O of O suicin O 90 O - O 1330 O gene O cluster O among O S. O suis O serotype O 2 O strains O of O ST25 O and O ST28 O . O ( O A O ) O Antifungal O activity O of O metabolites O against O Rhizoctonia O solani O AG-1 O ( O KACC O 40111 O ) O . O However O , O the O genome O of O S. O sp. O FXJ1.235 O contained O only O one O copy O of O the O two O genes O , O myeC O and O myeQ O , O respectively O . O On O the O other O hand O , O diacetylated O compound O 27 O revealed O the O lowest O antimicrobial O activity O against O Streptococcus O spp O . O Remarkably O , O both O programs O independently O predicted O the O same O gene O order O : O pks1E-C-B-A-D. O Just O 15 O kb O downstream O of O cACPL_2 O , O a O second O gene O cluster O ( O cACPL_3 O ) O containing O a O long O PKS O gene O with O various O accessory O protein O coding O sequences O could O be O identified O ( O Figure O 9C O ) O . O These O genes O appear O to O be O transcribed O from O a O single O bidirectional O promoter O located O between O congA O and O congC. O Tellingly O , O congA O , O congE O , O and O congB O are O arranged O together O in O exactly O the O same O way O as O their O counterparts O ozmO O , O ozmP O , O and O ozmQ O in O the O oxazolomycin O gene O cluster O . O Genes O involved O in O the O polyketide O assembly O Ten O PKS O modules O were O identified O in O the O ptx O gene O cluster O , O encoded O by O ptxB O , O ptxC O , O ptxF O , O and O ptxH. O PtxC O and O PtxF O closely O resembled O OzmQ O ( O 67 O % O identity O ) O and O OzmN O ( O 51 O % O identity O ) O , O respectively O . O Characterization O of O Leucocin O B-KM432Bz O from O Leuconostoc O pseudomesenteroides O Isolated O from O Boza O , O and O Comparison O of O its O Efficiency O to O Pediocin O PA-1 O A O bacteriocin-producing O bacterium O was O isolated O from O boza O and O identified O as O Leuconostoc O pseudomesenteroides O KM432Bz O . O Genome O mining O reveals O short O NRPS O genes O in O the O genome O of O strains O GPE O PC73 O and O XaS3 O Two O short O NRPS O genes O are O also O present O on O the O chromosome O of O strain O GPE O PC73 O in O two O additional O loci O . O The O use O of O negatively O charged O glutamyl-tRNAGlu O as O a O cosubstrate O may O explain O the O observation O that O Ser/Thr O residues O flanked O by O hydrophobic O residues O are O better O substrates O for O dehydration O than O those O flanked O by O polar O and O especially O negatively O charged O residues.74,79 O Although O NisB O could O utilize O the O E. O coli O glutamyl-tRNAGlu O as O a O source O of O activated O Glu O , O the O LanB O from O the O NAI-107 O producing O organism O Microbispora O sp. O 107891 O , O MibB O , O could O not O do O so O efficiently.196 O Reconstitution O of O activity O for O MibB O required O the O addition O of O the O charged O cognate O CUC O anticodon O tRNAGlu O from O the O producing O organism.196 O A O comparison O of O the O nucleotide O sequence O of O Microbispora O sp. O 107891 O tRNAGlu O with O that O of O E. O coli O tRNAGlu O revealed O differences O in O the O acceptor O stem O . O Nogalamycin O is O an O anthracycline O group O antibiotic O produced O by O S. O nogalater O . O Analysis O of O the O reverse O transcription O of O phtL O , O the O intergenic O region O of O phtMN O and O amtA O , O confirmed O that O expression O of O these O genes O in O enhanced O by O components O present O in O leaf O extracts O . O Results O Identification O of O the O 1 O BGC O The O genome O of O P. O fluorescens O ATCC O 39502 O was O sequenced O at O the O Earlham O Institute O ( O Norwich O , O UK O ) O using O the O Pacific O Biosciences O ( O PacBio O ) O RSII O platform O , O and O assembly O using O the O HGAP2 O pipeline O gave O a O single O circular O contig O of O ∼6.15 O O O Mb O These O genes O were O tandemly O arranged O in O the O cluster O from O PC-07 O to O PC-13 O and O PC-18 O to O PC-19 O , O interrupted O by O genes O PC-14 O to O PC-17 O . O Polyketide O synthase O domains O are O as O follows O KS O ketosynthase O , O AT O acyltransferase O , O KR O ketoreductase O , O DH O dehydratase O , O ACP O acyl-carrier-protein O , O CAL O CoA O ligase O , O KSIII O 3-oxoacyl-ACP O synthase O III O Pathway O regulation O Four O ORFs O ( O gonMR O , O gonL1 O , O gonL2 O and O gonL3 O ) O could O be O responsible O for O PM100117/18 O pathway O regulation O as O they O code O for O proteins O with O high O sequence O resemblance O to O transcription O regulatory O proteins O . O Biosynthesis O of O ergot O alkaloids O goes O via O the O common O intermediate O chanoclavine-I O , O and O studies O of O the O key O enzymes O , O EasE O and O EasC O , O involved O in O chanoclavine-I O formation O , O have O relied O on O gene O complementation O in O fungi O , O whereas O further O characterization O has O been O hampered O by O difficulties O of O poor O EasE O protein O expression O . O The O patE O gene O encodes O a O patellamide O A O and O C O precursor O peptide O of O 71 O amino O acid O residues O , O the O first O 37 O of O which O serve O as O a O leader O sequence O for O processing O . O Hyarulomycin-biosynthetic O genes O are O indicated O with O orf O numbers O as O shown O in O Table O 5Table O 5Putative O hyaluromycin O biosynthetic O gene O cluster O and O the O neighboring O genesOrf1-Size O (aa)Proposed O functionClosest O homologHomolog O ( O I/S O , O % O ) O inDescription O , O Origin O , O Accession O numberI/Sb O (%)grh O clusterrub O cluster769230cyclasehypothetical O protein O , O Streptomyces O fulvoviolaceus O , O WP_05242508254/63–RubK O (53/63)768a656ABC O transporter O ATP-binding O proteinmultidrug O ABC O transporter O ATP-binding O protein O , O Actinopolymorpha O alba O , O WP_02057673170/83––767a577multidrug O ABC O transporter O ATPasemultidrug O ABC O transporter O ATPase O , O Streptomyces O varsoviensis O , O WP_03088138569/81––766a117MarR O family O transcriptional O regulatorMarR O family O transcriptional O regulator O , O Actinomadura O macra O , O WP_06746891145/63––765a72unknownhypothetical O protein O , O Streptomyces O aurantiacus O , O WP_055507532.56/60––764a498transcriptional O regulatorhypothetical O protein O , O Streptomyces O sp. O NRRL O WC-3742 O , O WP_05183632055/63GrhR2 O (34/48)763a533amide O synthetasehypothetical O protein O , O partial O , O Streptomyces O sp. O NRRL O WC-3742 O , O WP_07891086060/70––762a4055-aminolevulinate O synthaseAsuD2 O , O Streptomyces O nodosus O subsp O . O These O results O confirmed O that O MyeD O and O MyeG O were O essential O for O mycemycin O biosynthesis O and O MyeP O was O responsible O for O the O post-halogenation O of O mycemycin O in O S. O sp. O FXJ1.235 O . O Lantibiotic O gene O clusters O identified O in O firmicutes O Identification O of O novel O Bacillus O cereus O associated O lantibiotic O clusters O Bacillus O species O are O rod-shaped O , O endospore-forming O aerobic O or O facultatively O anaerobic O , O Gram-positive O bacteria O that O are O ubiquitous O in O nature O . O Elucidation O of O Final O Steps O of O the O Marineosins O Biosynthetic O Pathway O through O Identification O and O Characterization O of O the O Corresponding O Gene O Cluster O O O The O marine O Streptomyces O sp. O CNQ-617 O produces O two O diastereomers O , O marineosins O A O and O B. O These O are O structurally O related O to O alkyl O prodiginines O , O but O with O a O more O complex O cyclization O and O an O unusual O spiroaminal O skeleton O Tetrodotoxin O is O known O to O be O biosynthesized O by O various O bacteria O , O including O actinobacteria O , O bacteroides O , O firmicutes O , O and O proteobacteria O [ O 140,141 O ] O . O This O analysis O successfully O led O to O the O identification O of O the O brominated O marine O pyrroles/phenols O ( O bmp O ) O biosynthetic O gene O locus O in O both O bacteria O . O The O three O genes O ( O obaDEF O ) O appear O sufficient O to O encode O for O the O production O of O 4 O , O the O biosynthesis O of O which O is O well O understood O from O previous O genetic O studies O on O chloramphenicol27 O and O pristinamycin28 O biosynthesis O . O Anthracimycin O BII-2619 O ( O 2 O ) O was O purified O as O a O white O powder O and O was O found O to O have O the O same O molecular O formula O C25H32O4 O and O UV O as O anthracimycin O ( O 1 O ) O . O LC-MS O measurements O confirmed O the O presence O of O neosaxitoxin O ( O 3695 O μg O g-1 O DW O ) O , O saxitoxin O ( O 3064 O μg O g-1 O DW O ) O , O and O GTX5 O ( O 567 O μg O g-1 O DW O ) O . O p O O O < O O O 0.01 O , O * O p O O O < O O O 0.05 O During O the O fermentation O anaphase O ( O after O the O 6th O day O ) O , O the O expression O levels O of O MpFasA2 O , O MpFasB2 O , O MpPKS5 O , O mppD O , O mmpB O , O and O mppR1 O were O significantly O up-regulated O ( O p O O O < O O O 0.01 O The O precursor O peptide O D187_01267 O from O C. O fuscus O DSM O 2262 O has O eight O cysteine O residues O , O the O highest O among O all O the O identified O precursor O peptides O . O Orf O 5 O , O which O is O located O 5 O prime O to O sxtM1 O , O and O contains O a O short O truncated O sequence O which O is O highly O similar O to O sxtH O , O a O hydroxylase O putatively O involved O in O the O hydroxylation O of O C-12 O of O saxitoxin O . O The O orf8 O gene O remnant O — O along O with O another O expression-correlated O orf O encoding O a O putative O nonribosomal O peptide O synthetase O — O were O utilized O as O probes O to O isolate O four O contiguous O cosmids O from O the O genomic O DNA O of O the O producing O strain O of O A-503083s O . O The O P. O janthinellum O wild O type O strain O produced O 13-desoxypaxilline O and O prenyl-elaborated O indole-diterpenes O of O higher O mass O , O m/z+ O 584 O ( O attributable O to O the O janthitremanes O shearinine O A O or O F O ) O and O m/z O + O 570 O ( O attributable O to O aflatremane O diprenyl-paspalinines O such O as O shearinine O K O or O its O isomers O ) O [ O 24,29,30 O ] O . O Serotype O Source O , O origin O References O Stx O Nos O of O strains O wzxO2 O wzxO2 O - O 2 O wzxO2 O - O 3 O neuBK1 O O2:K1:H6 O Infant O feces O , O Germany O Wullenweber O et O al. O , O 1993 O ; O Bettelheim O et O al. O , O 2003 O − O 1 O + O − O − O + O O2:K1:H7 O Infant O feces O , O Germany O Wullenweber O et O al. O , O 1993 O ; O Bettelheim O et O al. O , O 2003 O − O 1 O + O − O − O + O O2 O : O H1 O Calf O feces O , O Germany O This O work O , O 2010 O − O 1 O + O − O − O − O O2:K1:H4 O Infant O feces O , O Germany O Wullenweber O et O al. O , O 1993 O ; O Bettelheim O et O al. O , O 2003 O − O 1 O + O − O − O + O O2:K5:H4 O Infant O feces O , O Germany O Wullenweber O et O al. O , O 1993 O ; O Bettelheim O et O al. O , O 2003 O − O 2 O + O − O − O − O O2:H25 O Ribosomally O Synthesized O and O Post-Translationally O Modified O Peptides O ( O RiPPs O ) O Lanthipeptides O are O members O of O the O rapidly O expanding O RiPP O family O of O natural O products O . O No O RT-PCR O amplicons O were O detected O at O sub-region O IIf O ( O PT8 O ) O ( O orf25 O and O orf26 O ) O and O region O III O ( O PT9 O ) O ( O orf27-orf28 O ) O . O In O order O to O investigate O this O , O genB O gene O encoding O a O putative O lantibiotic O dehydratase O ( O Table O 2 O ) O was O inactivated O via O insertion O of O the O pC1_KN O vector O into O its O coding O region O , O yielding O recombinant O strain O YIM O 130001/KN O . O Among O them O , O the O 1617 O bp O open O reading O frame O mcyH O encodes O a O putative O 37,000 O Da O transmembrane O protein O , O belonging O to O the O ABC O transporter O . O In O the O second O cluster O , O there O were O six O putative O precursor O peptides O ( O IIE_05066 O , O 67 O , O 68 O , O 69 O , O 70 O and O 71 O ) O with O almost O identical O leader O sequences O ( O 74–97 O % O identity O ) O , O a O LanM O ( O IIE_05073 O , O 24 O % O identical O to O HalM O ) O , O a O LanT O ( O IIE_05074 O ) O and O a O LanP O ( O IIE_05075 O ) O determinant O . O Genes O encoding O Gassericin O E O ( O gaeA O ) O , O the O putative O complement O peptide O GaeX O ( O gaeX O ) O and O their O putative O immunity O protein O ( O gaeI O ) O , O could O form O an O transcriptional O unit O , O driven O by O two O putative O alternative O promoters O ( O P3a O and O P3b O ) O . O A O general O hypothesis O is O that O a O symbiotic O or O commensal O bacterium O living O within O these O organisms O is O responsible O for O tetrodotoxin O production O . O Purple O arrow O : O daT O gene O predicted O to O be O required O for O biosynthesis O of O Dab O ( O 2,4-diamino O butyric O acid O ) O . O hydrophila O ATCC O 7966 O 92 O YP_857396 B-bgc-accession ORF14 O 16303 O .. O 17259 O UDP-glucose O 4-epimerase O galE O Aeromonas O hydrophila O subsp O . O The O 5′-end O of O the O cluster O is O similar O to O the O other O O1 O strains O , O containing O the O rmlBDAC O gene O cluster O followed O by O the O wzx O gene O , O the O mnaA O gene O ( O encoding O a O UDP-N-acetylglucosamine O 2-epimerase O ) O and O a O glycosyl O transferase O . O Lasso O peptides O are O an O emerging O family O of O ribosomally O synthesized O and O post-translationally O modified O peptides O ( O RiPPs O ) O produced O by O bacteria5 O . O Two O transporter O resistance O genes O , O snbR O and O ptr O , O were O identified O , O one O within O the O cluster O and O another O outside O of O the O cluster O [ O 136 O ] O . O Analysis O of O promoters O within O the O type O F7 O toxin O gene O cluster O Because O the O regulatory O botR O gene O is O not O present O in O the O botulinum O toxin O gene O clusters O of O nonproteolytic O neurotoxigenic O clostridia O ( O Fig. O 1 O ) O , O we O characterized O the O promoter O sequences O of O their O polycistronic O p47-ntnh-bont O and O orfX1-orfX2-orfX3 O transcripts O ( O Pp47 O and O PorfX1 O respectively O ) O to O search O for O promoter O sequences O that O might O be O recognized O by O a O presently O unknown O regulatory O protein(s O ) O . O Results O and O discussion O Genome O sequencing O of O M. O O O echinospora O CCTCC O M O 2018898 O M. O O O echinospora O CCTCC O M O 2018898 O ( O also O known O as O M. O O O echinospora O HS-1520 O - O 016 O - O 89 O ) O is O an O industrial O gentamicin O B O producing O strain O ( O 486 O O O mg/L O ) O generated O by O Hisun O Pharmaceutical O Co. O Ltd O through O conventional O This O new O SM O has O structural O similarities O to O the O known O histone O deacetylase O inhibitor O apicidin O . O The O biosynthetic O gene O cluster O of O zearalenone O was O cloned O from O Fusarium O graminearum O as O a O 50 O kb O DNA O fragment O [ O 328,329,330 O ] O . O Moreover O , O the O transcriptome O dataset O of O S. O officinalis O presented O other O genes O , O such O as O SoGPS O , O SoFPS2 O , O and O SoGGPSΙΙ10 O , O which O are O the O immediate O precursor O of O the O mono- O , O sesqui- O , O and O di-terpene O biosynthesis O pathway O . O Biosynthetic O and O Synthetic O Strategies O for O Assembling O Capuramycin-Type O Antituberculosis O Antibiotics O Mycobacterium O tuberculosis O ( O Mtb O ) O has O recently O surpassed O HIV/AIDS O as O the O leading O cause O of O death O by O a O single O infectious O agent O . O RESULTS O Streptomyces O lunaelactis O produces O ferroverdins O and O bagremycins O . O Notably O , O minC O encodes O a O 613-amino O acid O protein O containing O two O domains O , O an O N-terminal O HAD O phosphatase O domain O and O the O C-terminal O DUF4243 O domain O with O unassigned O function O . O Except O for O cylindrocyclophane O A O ( O 25 O ) O , O non-carbamoylated O or O diacetylated O [7.7]paracyclophanes O ( O e.g. O , O cylindrocyclophane O A1 O ( O 21 O ) O and O D O ( O 27 O ) O ) O tended O to O be O slightly O less O potent O against O MRSA O , O especially O against O strains O N315 O and O Mu50 O ( O MICs O in O the O range O 0.8‒12.9 O µM O ) O than O the O other O derivatives O , O as O it O has O been O reported O previously O for O MRSA O strain O 1 O [ O 7 O ] O . O This O gene O was O under O the O control O of O the O native O promoter O ( O 500 O bp O upstream O region O of O the O SOD_c20780 O , O which O belonged O to O a O cluster O of O four O genes O which O were O further O analyzed O in O Domik O et O al. O , O 2016 O ) O and O the O sodorifen O emission O was O restored O ( O Figure O 4C O ) O . O N- O and O C-terminal O sequence O analysis O of O the O two O cluster O types O revealed O the O gene O orders O nrps2B-C-A O and O pks3A-B-C O as O most O likely O . O In O Actinoplanes O sp. O SE50/110 O , O one O NRPS O ( O cACPL_1 O ) O , O two O PKS O ( O cACPL_2 O & O cACPL_3 O ) O and O a O hybrid O NRPS/PKS O cluster O ( O cACPL_4 O ) O were O found O by O gene O annotation O and O subsequent O detailed O analysis O using O the O antiSMASH O pipeline O [ O 84 O ] O . O Figure O 1Conservation O of O 2x O type O III O pks O genomic O cluster O and O phylogenetic O analysis O of O M. O marinum O ( O Mmar O ) O type O III O PKSs O . O A O cytolysin O immunity O protein O ( O CylI O ; O BCSJ1_09298 O ) O was O also O found O to O be O present O in O the O cluster O . O Biosynthesis O of O the O other O condensing O partner O , O 4-ethylidene-L-proline O , O is O presumably O encoded O by O a O set O of O five O genes O , O lim10 O – O lim14 O ( O Fig. O O O 3c O ) O , O which O are O homologous O to O the O genes O of O the O APD O sub-cluster O encoding O biosynthesis O of O APD O precursors O in O other O PBDs O , O lincomycin O , O and O hormaomycin O The O starter O and O the O module O 1 O uptake O 3-FSA O and O L-threonine O , O respectively O , O common O to O all O pathways O , O but O the O module O 2 O uptake O pyruvate O ( O AntC O ) O , O isoleucic O acid O ( O SmlB O ) O , O and O valic O acid O ( O NatB O ) O , O respectively O . O To O elucidate O the O biosynthetic O machinery O associated O with O TTN O production O , O the O ttn O biosynthetic O gene O cluster O from O S. O griseochromogenes O was O isolated O and O characterized O , O and O its O involvement O in O TTN O biosynthesis O confirmed O by O gene O inactivation O and O complementation O experiments O . O The O function O of O only O one O GT O , O WbyM O , O has O been O experimentally O confirmed O ( O Kondakova O et O O O al. O 2012 O ) O , O though O the O linkage O specificities O of O all O GTs O have O been O predicted O ( O Table O O O 2 O Identification O and O Characterization O of O Mycemycin O Biosynthetic O Gene O Clusters O in O Streptomyces O olivaceus O FXJ8.012 O and O Streptomyces O sp. O FXJ1.235 O Mycemycins O A O – O E O are O new O members O of O the O dibenzoxazepinone O ( O DBP O ) O family O , O derived O from O the O gntR O gene-disrupted O deep O sea O strain O Streptomyces O olivaceus O FXJ8.012Δ1741 O and O the O soil O strain O Streptomyces O sp. O FXJ1.235 O . O A O total O of O thirteen O genes O ( O txnB1–txnB12 O and O txnM1 O ) O in O the O txn O gene O cluster O encoding O enzymes O are O consistent O with O the O biosynthesis O of O two O sugar O moieties O and O subsequently O attachment O to O the O aglycon O ( O Fig. O 3C O and O B O ) O . O We O then O commissioned O a O synthetic O operon O containing O the O regions O harboring O kyaN O to O kyaH O plus O the O upstream O promoter O region O of O kyaN O as O an O EcoRI/XbaI O fragment O ( O Fig. O S2B O ) O . O 2.7.1.1300605.7833.27 O SoFOLK3 O K15892 O SO|comp825225_c0 O 2.7.1.20525.34 O SoFOLK4 O K15892 O SO|comp22857_c0 O 2.7.1.2732721.03 O SoPCYOX1 O K05906 O SO|comp17568_c0 O 1.8.3.5 O , O O O 1.8.3.6227571721.78 O SoSTE24 O - O K06013 O SO|comp520699_c0 O 3.4.24.8432641.88 O SoSTE24 O - O 2 O K06013 O SO|comp8969_c0 O 3.4.24.841628659.7927.93 O SoCHLP1 O K10960 O SO|comp12058_c0 O 1.3.1.831475924.49 O EEQ86297 B-bgc-accession PJ-14 O ( O janQ O ) O 9 O 469 O Cytochrome O P450 O monooxygenase O P. O paxilli O 0.0 O AAK11527 B-bgc-accession PJ-15 O ( O janD O ) O 2 O 438 O Aromatic O prenyl O transferase O P. O paxilli O 0.0 O AAK11526 B-bgc-accession PJ-16 O ( O janO O ) O 4 O 448 O FAD-binding O oxidoreductase O P. O paxilli O 0.0 O ADO29935 B-bgc-accession PJ-17 O 4 O 283 O Conserved O hypothetical O Talaromyces O marneffei O 6e−32 O XP_002147239 B-bgc-accession PJ-18 O 2 O 348 O Alcohol O dehydrogenase O A. O terreus O 0.0 O XP_001212944 B-bgc-accession PJ-19 O 2 O 272 O FRG1-like O family O protein O P. O oxalicum O 0.0 O EPS27959 B-bgc-accession PJ-20 O 3 O 720 O Conserved O hypothetical O P. O oxalicum O 0.0 O EPS27958 B-bgc-accession PJ-21 O 2 O 514 O Glucoronyl O hydrolase O P. O oxalicum O 0.0 O EPS27957 B-bgc-accession PJ-22 O 7 O 801 O Transcriptional O regulator O P. O oxalicum O 0.0 O EPS27956 B-bgc-accession Proposed O janthitremane O biosynthetic O genes O are O shown O in O bold O type O . O Mining O of O the O Pyrrolamide O Antibiotics O Analogs O in O Streptomyces O netropsis O Reveals O the O Amidohydrolase-Dependent O “ O Iterative O Strategy O ” O Underlying O the O Pyrrole O Polymerization O In O biosynthesis O of O natural O products O , O potential O intermediates O or O analogs O of O a O particular O compound O in O the O crude O extracts O are O commonly O overlooked O in O routine O assays O due O to O their O low O concentration O , O limited O structural O information O , O or O because O of O their O insignificant O bio-activities O . O The O tylosin O biosynthetic O gene O cluster O was O cloned O from O Streptomyces O fradiae O [ O 407 O ] O . O Two O transporters O [ O 421 O ] O ( O GB O Nos. O CCA54203 B-bgc-accession and O CCA57351 B-bgc-accession ) O , O acetyltransferase O [ O 422 O ] O , O and O a O phosphotransferase O [ O 423,424 O ] O ( O GB O No. O CCA57350 B-bgc-accession ) O were O reported O to O be O involved O in O self-resistance O . O Consequently O , O derived O Actinoplanes O strains O with O increased O acarbose O yields O are O being O used O in O large O scale O industrial O batch O fermentation O since O 1990 O and O were O continuously O optimized O by O conventional O mutagenesis O and O screening O experiments O . O The O Role O of O Each O Gene O within O the O fus O Gene O Cluster O in O Inhibition O of O F. O oxysporum O f. O sp. O cucumerium O Results O Distribution O of O the O anabaenopeptin O synthesis O genes O among O the O genus O planktothrix O Phylogenetic O analysis O of O all O 125 O Planktothrix O strains O revealed O a O diversification O comprising O three O major O lineages O : O Lineage O 1 O and O Lineage O 2 O represented O only O the O strains O assigned O to O P. O agardhii/P. O rubescens O and O Lineage O 3 O represented O P. O pseudagardhii O , O P. O mougeotii O , O and O P. O tepida O ( O Figure O 2 O ) O . O Results O and O discussion O General O features O of O anaerobe O genomes O with O respect O to O RiPPs O To O survey O the O diversity O of O RiPPs O we O have O undertaken O a O bioinformatic O investigation O of O 211 O complete O and O published O anaerobe O genomes O for O the O presence O of O RiPP O genes O and O gene O clusters O . O We O therefore O assumed O that O proteins O Au8003 O and O Au11565 O were O sesterterpene O synthase O , O and O that O Au13192 O was O diterpene O synthase O . O The O acn O cluster O localized O to O a O 39.8 O kb O length O region O consisting O of O 25 O open O reading O frames O ( O ORFs O ) O , O including O a O set O of O four O genes O that O drive O the O construction O of O the O 4-methyl-3-hydroxy-anthranilic O acid O ( O 4-MHA O ) O precursor O and O three O non-ribosomal O peptide O synthetases O ( O NRPSs O ) O that O generate O the O 4-MHA O pentapeptide O semi-lactone O , O which O , O upon O dimerization O , O affords O final O actinomycin O D. O Furthermore O , O the O acn O cluster O contains O four O positive O regulatory O genes O acnWU4RO O , O which O were O identified O by O in O vivo O gene O inactivation O studies O . O Discovery O and O Biosynthesis O of O the O Antibiotic O Bicyclomycin O in O Distantly O Related O Bacterial O Classes O ABSTRACT O Bicyclomycin O ( O BCM O ) O is O a O clinically O promising O antibiotic O that O is O biosynthesized O by O Streptomyces O cinnamoneus O DSM O 41675 O . O Further O mutation O analysis O revealed O that O with O the O exception O of O fusTE O , O the O seven O genes O fusG O , O fusF O , O fusE O , O fusD O , O fusC O , O fusB O , O and O fusA O within O the O fus O cluster O were O all O involved O in O inhibiting O fungi O . O ( O ii O ) O EPS273-B O belongs O to O P-loop_NTPase O superfamily O and O is O predicted O to O be O a O sensor O kinase O . O The O analysis O of O the O genome O using O antiSMASH O software O revealed O that O 29 O gene O clusters O are O involved O in O the O biosynthesis O of O diverse O secondary O metabolites O including O terpenes O , O lanthipeptides O , O non-ribosomal O peptides O , O and O polyketides O ( O Supplementary O Table O S2 O ) O . O Their O inhibitory O activities O are O moderate O compared O with O those O of O known O cathepsin O B O inhibitors O , O such O as O E-64 O , O which O are O active O at O a O nM O range O [ O 23 O ] O . O Non-enzymatic O pyridine O ring O formation O in O the O biosynthesis O of O the O rubrolone O tropolone O alkaloids O The O pyridine O ring O is O a O potent O pharmacophore O in O alkaloid O natural O products O . O The O former O transporter O was O reported O to O be O responsible O for O the O transport O of O ochratoxin O into O the O outside O of O the O cell O . O Of O the O 18 O putative O genes O responsible O for O EPS273 O biosynthesis O , O four O genes O are O predicted O to O encode O regulatory O proteins O . O A O Terpene O Synthase O Is O Involved O in O the O Synthesis O of O the O Volatile O Organic O Compound O Sodorifen O of O Serratia O plymuthica O 4Rx13 O Bacteria O release O a O plethora O of O volatile O organic O compounds O , O including O compounds O with O extraordinary O structures O . O Two O transporter O genes O pmxC O and O pmxD O are O present O in O the O middle O of O the O cluster O . O The O capreomycin O biosynthetic O gene O cluster O was O cloned O . O Streptomyces O sp. O ICC1 O and O Streptomyces O sp. O ICC4 O have O a O total O of O 450 O subsystems O while O S. O lavendulae O has O 435 O , O indicating O all O three O strains O likely O possess O similar O specific O biological O processes O and O structural O complexes O ( O Overbeek O et O al. O , O 2005 O ) O . O The O por20 O is O homologous O to O NRPS O coding O gene O orf21 O from O anthramycin O biosynthesis O responsible O for O anthranilate O building O unit O activation O . O This O is O of O particular O interest O for O necrotrophic O pathogens O , O as O fumonisins O can O induce O plant O cell O death O by O depletion O of O extracellular O ATP O [ O 78 O ] O . O In O total O , O 222 O SNP O ’s O were O located O in O the O coding O regions O anaA O , O orf O 1 O , O anaB O , O anaC O , O anaD O , O anaF O and O anaG. O One O hundred O and O thirty-four O of O the O 222 O SNP O ’s O were O synonymous O and O 88 O were O nonsynonymous O substitutions O . O The O rifamycin O biosynthetic O gene O cluster O was O cloned O from O Amycolatopsis O mediterrane O [ O 445 O ] O . O Orf8 O might O therefore O represent O yet O another O fragment O of O a O PST O biosynthesis O accessory O gene O that O has O been O inactivated O . O The O tomaymycin O biosynthetic O gene O cluster O was O cloned O as O 26 O kb O DNA O fragment O , O and O one O transporter O gene O , O tomM O , O was O identified O within O the O cluster O [ O 132 O ] O ( O GB O No. O FJ768957 B-bgc-accession ) O . O In O addition O to O DivA O and O DivM O , O these O include O an O α-ketoglutarate-dependent O Fe(II O ) O monooxygenase/β-Asp O hydroxylase O ( O DivX O ; O ARD09204 B-bgc-accession ) O , O a O homolog O of O DurN O ( O WP_071962205.1 B-bgc-accession ) O shown O to O be O involved O in O lysinoalanine O formation15–17 O ( O DivN O ; O ARD09209 B-bgc-accession ) O , O a O SAM-dependent O methyltransferase O ( O DivMT O ; O ARD09206 B-bgc-accession ) O , O and O an O ABC-type O transporter O ( O DivT O ; O ARD09207 B-bgc-accession ) O . O The O biosynthetic O gene O cluster O for O nystatin O was O cloned O from O S. O noursei O ATCC11455 O [ O 281 O ] O . O Genbank O Accession O Number O The O GenBank O accession O number O for O the O partial O salivaricin O G32 O ( O sln O ) O locus O from O S. O salivarius O strain O G32 O is O JN831266 B-bgc-accession . O A O further O set O of O 7 O ORFs O ( O nocD O – O H O and O nocL O – O M O ) O appeared O to O be O connected O to O fatty O acid O processing O , O including O two O coding O sequences O of O fatty O acyl-AMP O ligases O ( O FAALs O ) O and O associated O acyl O carrier O proteins O ( O ACPs O ) O ( O nocH O and O nocL O – O M O ) O . O Intriguingly O these O four O enzymes O ( O AcOS O , O PaFs O , O PaPs O and O AbFS O ) O are O all O bifunctional O terpene O synthases O that O each O possess O two O catalytically O independent O domains O namely O PT O and O TC O , O and O can O therefore O carry O out O both O chain O elongation O and O terpene O cyclization O . O Genome O mining O reveals O the O genus O Xanthomonas O to O be O a O promising O reservoir O for O new O bioactive O non-ribosomally O synthesized O peptides O Background O Various O bacteria O can O use O non-ribosomal O peptide O synthesis O ( O NRPS O ) O to O produce O peptides O or O other O small O molecules O . O Recent O studies O have O implicated O type O III O polyketide O synthases O ( O PKSs O ) O in O cell O wall O alterations O in O several O bacteria O . O The O biosynthetic O gene O cluster O for O microcystin O spanning O 55 O kb O was O cloned O ( O GB O No. O AF183408 B-bgc-accession ) O . O Although O inactivation O of O rubA O did O not O affect O rubrolone O production O ( O Supplementary O Fig. O 2 O , O trace O IV O ) O , O both O S. O albus O 9B10-ΔB O and O S. O albus O 9B10-ΔC O shared O a O similar O metabolite O profile O that O included O abolished O production O of O 1 O together O with O three O new O peaks O 5–7 O ( O Fig. O 2 O , O traces O V O and O VI O ) O . O The O indolocarbazole O staurosporine O is O a O potent O inhibitor O of O a O variety O of O protein O kinases O such O as O protein O kinase O C O and O cyclin-dependent O protein O kinase O . O In O addition O , O there O are O several O efflux O ( O kanO O and O kanN O ) O and O ABC O transporter O protein O genes O ( O kanS O , O kan O R O and O kanQ O ) O . O K311 O was O sequenced O ( O NCBI O accession O number O : O JN852959 B-bgc-accession ) O and O analyzed O with O FramePlot O and O 18 O genes O were O predicted O to O be O involved O in O echinomycin O biosynthesis O ( O Figure O 2 O ) O . O The O hamC O gene O encodes O a O p-aminobenzoate O N-oxygenase O , O known O as O AurF O , O which O catalyzes O the O conversion O of O p-aminobenzoate O ( O PABA O ) O to O p-nitrobenzoate O (PNBA)19 O . O A O phpR/brpA O homolog O , O which O we O assume O controls O expression O of O the O PAL O locus O , O was O found O in O the O corresponding O location O in O K. O phosalacinea O . O Among O them O , O non-disulfide-bridged O peptides O are O attractive O compounds O , O because O they O show O antimicrobial O , O antimalarial O , O immunosuppressing O , O and O anticancer O activities O , O and O may O be O relevant O for O the O development O of O pharmaceutical O drugs O [ O 195 O ] O . O Lankamycin O is O a O 14-membered O macrolide O antibiotic O . O Interestingly O , O E. O canadensis O e4815 O contained O a O complete O EAS O cluster O from O the O E. O amarillans O ancestor O but O only O four O EAS O genes O ( O dmaW O , O easE O , O easF O and O easC O ) O from O the O E. O elymi O ancestor O , O while O the O other O E. O canadensis O isolate O CWR34 O only O contained O the O same O four O E. O elymi O EAS O genes O ( O Table O 3 O ) O . O This O locus O also O contains O eight O other O genes O that O have O not O yet O been O experimentally O characterized O : O two O encode O membrane O proteins O ( O mmpS4 O and O mmpL10 O ) O that O may O also O interact O with O the O polyketide O synthase O of O the O cluster O , O two O encode O a O sigma O factor O and O a O sigma-associated O protein O ( O ecf O and O sap O , O respectively O ) O that O are O believed O to O contribute O to O the O regulation O of O GPL O production O , O and O four O have O no O known O function O ( O Table O 1 O and O Fig. O 1 O ) O [ O 18,19 O ] O . O It O contains O 15 O open O reading O frames O , O including O tleA O for O a O nonribosomal O peptide O synthetase O , O tleB O for O a O P-450 O monooxygenase O , O tleC O for O an O aromatic O prenyltransferase O , O and O three O genes O for O ABC O transporter O . O Two O self-resistance O proteins O were O reported O , O one O is O oxygen O oxidoreductase O ( O Mcr O ) O and O the O other O is O mitomycin-binding O protein O ( O Mrd O ) O [ O 487,488 O ] O . O Ciguatoxins O are O produced O by O benthic O dinoflagellates O of O the O genus O Gambierdiscus O and O are O concentrated O in O commonly O consumed O fish O in O the O tropical O and O subtropical O regions O of O the O world O , O through O the O marine O food O chain O . O Therefore O , O to O provide O additional O evidence O that O the O correct O genomic O locus O was O identified O , O one O of O these O orfs O — O orf21 O encoding O a O putative O aminoglycoside O phosphotransferase O — O was O heterologously O expressed O in O 1-sensitive O strains O to O reveal O the O gene O product O confers O selective O resistance O to O 1 O . O TblD O appears O to O represent O an O interesting O gene O fusion O whose O product O is O a O full-length O glucose-methanol-choline-oxidoreductase O ( O GMC-oxidoreductase O ) O with O a O GNAT O family O acetyltransferase O domain O on O the O carboxy-terminus O . O Similarly O , O were O identified O the O compound O Y O as O filipin O I O ( O Table O O O 1 O ) O Therefore O , O among O the O nine O cluster O genes O involved O in O KK-1 O biosynthesis O , O seven O ( O apart O from O NRPS O and O the O transcription-factor-encoding O gene O ) O , O which O were O named O OMT O , O TR02 O , O TR03 O , O TR06 O , O TR07 O , O TR08 O , O and O TR09 O ( O see O Figure O 4 O ) O , O were O introduced O into O the O A. O oryzae O strain O with O NRPS O . O The O vph O gene O encoding O viomycin O phosphotransferase O is O involved O in O the O self-resistance O [ O 473 O ] O . O The O prototypical O members O of O the O group O I O lasso O peptides O include O siamycin O I O [ O 58 O ] O , O siamycin O II O [ O 58 O ] O and O RP71955 O [ O 59 O ] O , O all O of O which O possess O two O disulfide O bonds O and O an O N-terminal O cysteine O [ O 1 O , O 56 O , O 57 O ] O . O This O gene O cluster O consists O of O eight O genes O , O among O which O six O are O conserved O in O the O helvolic O acid O gene O cluster O except O fusC1 O and O fusB1 O . O These O results O confirm O that O phaseolotoxin O is O a O virulence O factor O . O A O mutant O with O an O in-frame O deletion O in O tmlU O made O both O marinolic O acid O and O pyrrothines O but O no O thiomarinol O ( O Figure O 3 O ) O strongly O suggesting O a O role O for O TmlU O in O joining O them O together O . O Annotation O of O the O genes O revealed O a O type O II O polyketide O biosynthetic O gene O cluster O that O consists O of O 36 O genes O and O might O be O involved O in O the O biosynthesis O of O 1 O and O 2 O . O The O DrrD O protein O may O function O as O oxygen O oxidoreductase O , O like O McrA O in O mitomycin O C O resistance O [ O 480 O ] O . O Moreover O , O a O set O of O mutant O constructs O with O deletion O of O alpD O , O alpR O , O and O alpE O genes O were O created O . O Results O and O discussion O Construction O of O JI-20A-overproducing O strain O by O disrupting O genP O and O genK O genes O The O original O strain O can O potentially O generate O gentamicin O B O ; O as O such O , O we O determined O whether O gentamicin O B O is O synthesized O from O the O 2ʹ-amino-containing O precursor O by O the O KanJ O and O KanK O homologs O . O We O observed O the O loss O of O microcystin O during O cultivation O of O a O closely O related O strain O , O Phormidium O sp. O DVL1003c O . O These O gene O fragments O represented O good O candidates O for O saxitoxin O biosynthesis O genes O due O to O their O homology O to O the O saxitoxin O genes O ( O sxtT O and O sxtH O ) O previously O identified O in O C. O raciborskii O T3 O [ O 21 O ] O . O An O acyltransfer O onto O the O analog O 4 O C-13 O hydroxyl O , O via O the O action O of O sxtACT O results O in O the O formation O of O analog O 6 O , O which O can O then O be O sulfated O by O SxtSUL O to O form O analog O 1 O . O Aclacinomycin O A O ( O aclarubicin O ) O , O a O trisaccharide O anthracycline O , O is O shown O to O be O active O in O patients O with O acute O myeloblastic O leukemia O , O but O induces O late O cardiac O toxicity O . O To O verify O this O hypothesis O , O S. O netropsis O CGMCC O 4.1650 O was O subjected O to O Illumina O genome O sequencing O . O Of O them O , O six O genes O ( O AcmABGKIW O ) O are O hypothetical O genes O involved O in O 5′-O-sulfonamide O formation O . O 67 O Transposition/inactive O sxtP O 1482 O ABI75126.1 B-bgc-accession SxtP O Anabaena O circinalis O AWQC131C O 86 O Regulator/pilli O formation O sxtD O 759 O ABI75125.1 B-bgc-accession SxtD O Anabaena O circinalis O AWQC131C O 85 O Desaturation O sxtE O 363 O ABI75124.1 B-bgc-accession SxtE O Anabaena O circinalis O AWQC131C O 90 O Unknown O * O Indicates O a O PsiBLAST O search O was O used O . O Results O Identification O and O heterologous O biosynthesis O of O pallidocin O The O pallidocin O producer O strain O was O identified O as O A. O pallidus O 8 O ( O previously O referred O to O as O Geobacillus O sp. O 832 O ) O by O a O Genome-to-Genome O Distance O Calculator O ( O GGDC O ) O using O a O digital O DNA−DNA O hybridization O ( O dDDH O ) O analysis O tool36 O . O HRESI(+)MS O analysis O of O nanangenine O F O ( O 8) O revealed O a O protonated O molecule O ( O [ O M O + O H]+ O m/z O 367.2483 O ) O indicative O of O a O molecular O formula O C21H34O5 O , O requiring O one O fewer O DBE O than O 2 O . O The O antitumor O protein O actinoxanthin O was O isolated O from O Actinomyces O globisporus O . O Deletion O of O SMA4147 O did O not O affect O althiomycin O production O ; O in O contrast O , O mutation O of O SMA2452 O abolished O althiomycin O production O ( O Figure O 6A O and O Figure O S2 O ) O . O Only O welM2 O was O identified O in O the O wel O gene O cluster O from O FM O SAG1427 O - O 1 O . O In O this O work O , O we O identified O the O actinomycin O biosynthetic O gene O cluster O ( O BGC O ) O acn O by O detailed O analyses O of O the O S. O costaricanus O SCSIO O ZS0073 O genome O . O The O resistance O genes O encoding O rRNA O methyltransferase O ( O tlrB O ; O GB O No. O AAD12162 B-bgc-accession ) O and O the O ABC O transporter O ( O tlrC O ; O GB O No. O AAA26832 B-bgc-accession ) O are O located O at O both O ends O of O the O cluster O . O ( O 82/89 O , O the O 81st–174th O aa)Orf2207DNA-binding O response O regulatorAOK24_RS06245/S. O niveiscabieiWP_063799404.1 O (61/74)Orf3361Hypothetical O proteinAOK24_RS06240/S. O niveiscabieiWP_079056694.1 O ( O 56/67 O ) O Genes O encoding O modular O PKSs O Four O large O type O I O PKSs O were O identified O within O the O rdm O cluster O . O The O suggested O scheme O follows O the O KEGG O indole O diterpene O biosynthetic O pathway O , O illustrating O a O parsimonious O route O to O epoxy-janthitrem O I O ( O 11 O , O 12-epoxy-janthitrem O G O ) O and O its O variants O ( O epoxy-janthitrems O II O – O IV O ) O . O Bacillus O amyloliquefaciens O FZB42 O was O chosen O for O these O experiments O because O it O already O harbors O the O mersacidin O immunity O genes O . O The O sequence O gaps O within O the O PKS O genes O were O filled O by O chromosomal O walking O using O the O pWLI512 O or O pWLI513 O as O template O . O ( O MIC O = O 3.0‒12.0 O µM O ) O , O and O was O up O to O 60-fold O less O effective O than O the O most O potent O compounds O , O such O as O its O monoacetylated O congener O cylindrocyclophane O B O ( O 26 O ) O . O CSU93 O Pe O SVGIDAEPH O --(x)35 O - O - O FCAKEATYKAWF O 25 O % O / O 34 O % O Gramicidin O Gsp O Bacillus O brevis O str O . O Our O analysis O thus O left O the O biosynthesis O of O 2 O as O the O remaining O unknown O , O and O only O the O products O of O obaG O and O obaH O to O be O functionally O assigned O . O The O functions O of O Rv0926 O and O Rv1174c O are O not O known O , O sap O and O ecf O may O play O roles O in O the O regulation O of O GPL O biosynthesis O , O and O were O this O the O case O , O it O would O suggest O that O the O regulatory O circuits O in O these O species O have O diverged O . O The O MlbQ O polypeptide O is O a O small O lipoprotein O from O the O NAI-107 O biosynthetic O gene O cluster O in O Microbispora O ATCC O PTA-5024 O that O confers O specific O resistance O to O NAI-107-like O lantibiotics.321 O Like O the O coordinated O immunity O provided O by O LanI O and O LanEFG O proteins O , O protection O against O NAI-107 O like O lantibiotics O is O conferred O by O several O proteins O , O MlbJQYX.321 O Although O MlbQ O sequesters O NAI-107 O and O functions O analogously O to O NisI O and O SpaI O , O its O structure O shows O a O novel O topology O consisting O of O four O β O strands O topped O by O two O short O helices O ( O Figure O 19A O ) O . O Each O module O of O a O canonical O PKS O has O minimally O a O ketosynthase O ( O KS O ) O domain O , O an O acyltransferase O ( O AT O ) O specifying O the O nature O of O the O incoming O extension O unit O , O and O an O acylcarrier O protein O ( O ACP O ) O that O tethers O intermediates O to O the O assembly O line O . O However O , O in O general O , O this O type O of O PKS O enzymes O is O thought O to O be O the O major O class O of O polyketide O biosynthesis O machineries O . O It O results O from O swallowed O spores O of O Clostridium O botulinum O ( O or O rarely O , O neurotoxigenic O Clostridium O butyricum O or O Clostridium O baratii O ) O that O germinate O and O temporarily O colonize O the O lumen O of O the O large O intestine O , O where O , O as O vegetative O cells O , O they O produce O botulinum O toxin O . O High-resolution O positive O electrospray O ionisation O mass O spectrometry O ( O HRESI(+)MS O ) O analysis O of O nanangenine O A O ( O 1 O ) O revealed O an O adduct O ion O ( O [ O M O + O Na]+ O m/z O 305.1363 O ) O indicative O of O a O molecular O formula O C15H22O5 O requiring O five O double O bond O equivalents O ( O DBE O ) O . O The O streptothricin O group O antibiotics O show O a O broad O antibacterial O spectrum O . O Mangotoxin O , O which O is O a O more O recently O described O toxin O , O inhibits O ornithine O acetyltransferase O ( O OAT O ) O ( O Figure O 1 O ) O , O producing O an O ornithine O deficit O and O interfering O with O arginine O metabolism O . O The O viomycin O biosynthetic O gene O cluster O was O cloned O and O sequenced O . O From O the O sequence O data O of O these O two O vectors O , O we O confirmed O that O the O assembly O line O organizations O of O JBIR-06 O and O neoantimycin O NRPS-PKSs O were O identical O with O those O in O the O previous O report32 O , O except O for O NatD O ( O Fig. O O O 1 O ) O TueB O also O houses O a O C-terminal O domain O bearing O significant O sequence O resemblance O to O the O cyclisation O ( O Cy O ) O domains O of O NRPS O multienzymes O , O which O typically O catalyse O the O heterocyclisation O of O cysteine O and O serine/threonine O to O thiazoline O and O oxazoline O rings.35 O This O TueB O domain O contains O the O active O site O sequence O motif O DxxxxDxxS O ( O where O x O is O any O amino O acid O ) O conserved O in O Cy O domains.36 O TueC O contains O an O adenylation O domain O predicted O to O be O specific O for O the O activation O of O l-cysteine O , O and O a O peptidyl O carrier O protein O ( O PCP O ) O domain O to O which O the O cysteinyl O residue O is O proposed O to O become O tethered.37 O The O co-location O of O a O gene O encoding O cysteine O activation O with O an O unusual O PKS O pointed O to O the O identity O of O this O cluster O as O governing O thiotetronate O biosynthesis O . O For O that O purpose O , O a O series O of O mutant O strains O affected O in O NQ O biosynthesis O putative O genes O ( O Fig. O O O 5 O ) O was O generated O by O disruption O of O gonP8 O , O or O individual O deletion O of O gonM4 O , O gonMT O , O gonSL O , O gonS1 O or O gonS2 O The O lichenicidins O consist O of O two O single O peptides O which O gain O their O full O activity O only O in O combination O [ O 30 O ] O and O they O are O encoded O by O two O different O precursor O peptides O as O well O as O modified O by O two O separate O LanM O enzymes O . O Further O , O we O exploit O these O findings O to O guide O the O design O of O artificial O cytolytic O toxins O that O are O recognized O by O the O SLS O biosynthetic O enzymes O and O others O that O are O intrinsically O cytolytic O . O We O thus O consider O that O AscR O positively O regulates O the O expression O of O both O the O asc-1 O and O -2 O cluster O genes O by O binding O to O this O motif O . O Furthermore O , O in O contrast O to O diacetylated O cylindrofridin O C O ( O 30 O ) O , O monoacetylated O congeners O A O ( O 28 O ) O and O B O ( O 29 O ) O were O also O active O against O MRSA O strains O N315 O and O Mu50 O ( O MICs O between O 6.0 O and O 21.6 O µM O ) O . O In O all O cases O we O did O not O observe O growth O inhibitory O activity O in O the O concentration O range O up O to O 100 O μg/ml O . O The O wzx O , O wzy O and O wzz O OPS O processing O genes O are O present O in O all O gene O clusters O , O indicating O that O all O Y. O pseudotuberculosis O serotypes O use O the O Wzx/Wzy-dependent O pathway O for O O-antigen O biosynthesis O . O Characterization O of O the O asc-2 O Cluster O Genes O . O In O this O paper O , O we O first O report O on O the O 30 O kb O gene O cluster O ( O 23 O genes O , O acmA O to O acmW O ) O involved O in O the O biosynthesis O of O these O two O antibiotics O and O a O biosynthetic O assembly O line O was O proposed O . O Results O and O discussion O Identification O of O the O talopeptin O biosynthetic O gene O cluster O To O explore O the O genetic O basis O for O the O assembly O of O 1 O and O 2 O we O sequenced O the O genome O of O Streptomyces O mozunensis O MK-23 O , O the O original O talopeptin O producer O . O This O analysis O predicted O that O the O operon O encodes O a O three O protein O hybrid O NRPS-PKS O assembly O line O ( O alb4 O , O alb5 O and O alb6 O ) O , O associated O tailoring O enzymes O ( O alb2 O and O alb3 O ) O and O an O export O and/or O resistance O protein O ( O alb1 O ) O . O In O addition O , O GliT O , O a O gliotoxin O reductase O , O plays O an O important O role O in O the O self-resistance O [ O 344,345 O ] O . O The O genes O for O apoprotein O ( O kedA O ) O and O two O transporters O ( O kedX2 O and O kedX O ) O are O present O within O the O cluster O . O At O first O the O leader O peptide O of O bacteriocin O KM432Bz O was O identified O from O translation O analysis O of O the O gene O cluster O sequence O and O showed O to O have O an O identical O amino O acid O sequence O to O that O shared O by O leucocin O B-Ta11a O and O leucocin O A-QU15 O ( O Fig. O 4 O ) O , O the O latter O having O also O been O isolated O from O a O Leuc O . O oryzae O strains O X8 O - O 1A O and O X11 O - O 5A O , O possess O novel O NRPS O gene O clusters O and O share O related O NRPS-associated O genes O such O as O those O required O for O the O biosynthesis O of O non-proteinogenic O amino O acids O or O the O secretion O of O peptides O . O AcmX O and O AcmY O were O shown O to O share O high O homology O to O all O known O FAD-dependent O chlorinases O , O such O as O ChlB4 O ( O accession O number O AAZ77674 B-bgc-accession ) O from O Streptomyces O antibiotics O which O participate O in O chlorothricin O biosynthesis O ( O 65 O % O and O 57 O % O protein O sequence O identity O respectively O ) O [ O 32 O ] O . O Methymycin O is O a O 12-membered O macrolide O that O is O isolated O from O Streptomyces O venezuelae O . O The O cluster O was O intermediated O by O an O unrelated O gene O annotated O as O hypothetical O protein O , O the O trans-isoprenyl O diphosphate O synthase O ( O II5_05400 O ) O . O In O addition O , O identification O of O amphipathic O α-helices O in O the O primary O sequence O and O immuno-detection O of O NisB O in O vesicles O of O L. O lactis O lead O to O the O expectation O that O NisB O may O be O membrane O associated,182 O which O also O stalled O biochemical O efforts O . O Amino O acid O sequence O of O leucocin O B-KM432Bz O precursor O ( O this O study O ) O was O aligned O class O IIa O bacteriocin O precursors O from O Leuconostoc O : O leucocin O A-UAL187 O , O leucocin O A-QU15 O , O leucocin O B-Ta11a O , O mesentericin O Y105 O and O pediocin O PA-1 O from O Ped O . O Based O on O these O facts O , O we O hypothesized O that O the O six-gene-mediated O reaction O is O likely O to O be O a O common O pathway O in O the O early O stage O biosynthesis O of O all O fusidane-type O antibiotics O to O give O the O key O intermediate O 2 O , O which O is O then O bifurcated O to O generate O different O fusidane-type O antibiotics O under O the O action O of O different O post-modification O enzymes O ( O Fig. O 2D O ) O . O We O also O demonstrated O that O MinCN O ( O the O N-terminal O phosphatase O domain O of O MinC O ) O , O MinD O ( O uracil O phosphoribosyltransferase O ) O , O and O MinT O ( O transporter O ) O function O together O as O the O safeguard O enzymes O , O which O collaboratively O constitute O an O unusual O self-resistance O system O . O Physical O map O of O the O genomic O region O containing O the O XaPPTase O gene O in O Xanthomonas O oryzae O strains O and O of O the O corresponding O region O in O other O sequenced O species O of O Xanthomonas O . O hydrophila O ATCC O 7966 O 99 O YP_857384 B-bgc-accession ORF3 O 3295 O .. O 4308 O nucleotide O sugar O epimerase O wcaG O Aeromonas O hydrophila O subsp O . O Deduced O Functions O of O Open O Reading O Frames O in O the O Tautomycetin O Biosynthetic O Gene O Cluster O gene O sizea O proposed O function O homologueb O identity%/ O similarity% O orf(−1 O ) O 262 O transposase O MUL_2441 O ( O YP_906264 O ) O 32/42 O Upstream O boundary O of O the O ttn O cluster O ttnQ O 472 O transcriptional O activator O StaR O ( O BAC55205 O ) O 13/19 O ttnJ O 560 O multidrug O transporter O RHA1_ro04399 O ( O YP_704343 O ) O 49/53 O ttnI O 449 O cytochrome O P450 O EryF O ( O 1Z8Q_A O ) O 30/43 O ttnR O 470 O dehydratase O PrpD O ( O 2HP3_A O ) O 24/38 O ttnS O 272 O unknown O PFL_4035 O ( O YP_261132 O ) O 27/39 O ttnH O 259 O thioesterase O PikAV O ( O AAC69333 O ) O 42/53 O ttnG O 926 O regulatory O protein O ThcG O ( O AAD28307 O ) O 33/46 O ttnF O 505 O l-carnitine O dehydratase O CaiB O ( O 1XK7_B O ) O 12/24 O ttnE O 444 O crotonyl-CoA O reductase O Ccr O ( O AAA92890 O ) O 75/84 O ttnD O 485 O UbiD O family O decarboxylases O UbiD O ( O 2IDB_A O ) O 24/36 O ttnC O 209 O flavoprotein O decarboxylase O VdcB O ( O AAD28781 O ) O 57/71 O ttnB O 7576 O PKS O modules O 6–9 O ttnA O 9528 O PKS O loading O module O and O modules O 1–5 O ttnK O 465 O esterase O PnbA O ( O 1QE3_A O ) O 29/44 O ttnP O 383 O CoA O transferase O CaiB O ( O 1XVV_A O ) O 24/41 O ttnO O 309 O citryl O CoA O lyase O Mtb O CitE O ( O 1Z6K_A O ) O 24/37 O ttnN O 363 O unknown O EhpF O ( O AAN40895 O ) O 37/52 O ttnM O 339 O hydroxylase O Plav_0577 O ( O YP_001411857 O ) O 29/42 O ttnL O 185 O unknown O Ybhb O ( O 1FUX_A O ) O 25/33 O Downstream O boundary O of O the O ttn O cluster O orf1 O 507 O polyprenyl O phospho-mannosyltransferase O MppI O ( O AAU34200 O ) O 32/48 O Numbers O are O in O amino O acids O . O Importantly O , O the O tlsC O gene O was O also O associated O with O putative O genes O encoding O YcaO-type O dehydratase O ( O tlsQ O ) O and O flavin-dependent O oxidoreductase O ( O tlsP O ) O in O the O same O operon O ( O Table O O O S1 O ) O The O XaPPTase O gene O was O found O in O all O analyzed O strains O of O X. O albilineans O and O X. O oryzae O . O Introduction O Aminoglycosides O ( O AGs O ) O constitute O one O of O the O oldest O classes O of O clinically O important O antibiotics O ( O Becker O and O Cooper O , O 2013 O ; O Jackson O et O O O al. O , O 2013 O Some O argimycins O P O showed O a O piperidine O ring O with O a O polyene O side O chain O ( O argimycin O PIX O ) O ; O others O contain O also O a O fused O five-membered O ring O ( O argimycins O PIV-PVI O ) O . O However O , O recent O genome O sequencing O and O transcriptome O analysis O , O combined O with O blast O analysis O , O indicate O that O monofunctional O Type O I O PKS O are O present O in O brevetoxin-producing O dinoflagellates O Karenia O brevis O [ O 38,39 O ] O , O Alexandrium O ostenfeldii O [ O 40 O ] O , O and O Heterocapsa O triqueta O [ O 41 O ] O . O Three O ORFs O of O brnQ1 O , O napA1 O and O DHelicase O that O amplified O and O sequenced O from O the O genomic O DNA O of O L. O plantarum O I-UL4 O were O also O found O in O the O reported O operons O . O Similarly O , O an O in-frame O deletion O was O created O in O the O PKS-NRPS O gene O tlmA O in O order O to O link O the O putative O tlm O cluster O in O Lentzea O sp. O ATCC O 31319 O to O the O production O of O TLM O . O Gene O name O in O P. O roqueforti O Strain O CECT2905a O Strain O FM164b O Size O of O the O deducedproteinc O ( O aminoacids O ) O Putative O function O in O andrastin O A O biosynthesisd O Identity O ( O % O ) O withorthologous O proteins O ofthe O P. O chrysogenum O adr O cluster O adrA O Proq04g062820 O 508 O Cytochrome O P450 O monooxygenase O 94 O adrC O Proq04g062830 O 1,452 O MFS O transporter O 83 O adrD O Proq04g062840 O 2,495 O Polyketide O synthase O 83 O adrE O Proq04g062850 O 336 O Ketoreductase O 89 O adrF O Proq04g062860a O 256 O Short O chain O dehydrogenase O 91 O adrG O Proq04g062870 O 316 O Prenyltransferase O 87 O adrH O Proq04g062880a O 476 O FAD-dependent O monooxygenase O 83 O adrI O Proq04g062890 O 245 O Terpene O cyclase O 94 O adrJ O Proq04g062900 O 496 O Acetyltransferase O 85 O adrK O Proq04g062910 O 278 O Methyltransferase O 94 O Despite O several O efforts O , O we O did O not O found O any O ORF O with O similarity O to O the O adrB O gene O from O P. O chrysogenum O in O the O P. O roqueforti O genome O . O The O mode O of O action O of O edeines O was O reported O to O inhibit O DNA O synthesis O at O low O concentration O , O and O translation O at O high O concentration O , O and O also O inhibit O cell O division O [ O 455 O ] O . O Interestingly O , O acetylated O cylindrocyclophanes O 26 O and O 27 O ( O MICs O of O 3.2‒6.4 O and O 95.7 O µM O ) O as O well O as O cylindrofridins O 28 O and O 29 O ( O MICs O of O 10.8 O and O 12.1‒48.2 O µM O ) O tended O to O be O less O potent O , O and O diacetylated O cylindrofridin O 30 O was O not O active O in O the O concentration O range O tested O . O A O tobramycin O producer O , O S. O tenebrarius O , O was O reported O to O produce O rRNA O methyltransferase O ( O KgmB O ) O [ O 35 O ] O . O All O L. O monocytogenes O lineages O produce O the O haemolysin O Listeriolysin O O O ( O a O 60 O kDa O protein O encoded O by O hly O located O within O LIPI-1 O ) O [ O 15 O ] O , O [26]–[28 O ] O which O would O be O expected O to O mask O any O haemolytic O activity O associated O with O LLS O . O In O silico O analysis O of O the O draft O genome O of O M. O O O echinospora O CCTCC O M O 2018898 O using O antiSMASH O ( O Weber O et O O O al. O , O 2015 O ) O allowed O the O identification O of O a O gene O cluster O containing O 32 O open O reading O frames O ( O Fig. O O O 1A O ) O , O which O show O the O same O gene O organization O pattern O and O share O on O average O 96 O % O sequence O identity O with O genes O in O the O previously O characterized O gentamicin O gene O cluster O of O M. O O O echinospora O ATCC15835 O ( O GenBank B-bgc-accession accession O number O : O KY971520 O ) O ( O 2014).Fig O . O The O biosynthetic O gene O cluster O was O cloned O from O A. O fumigatus O , O containing O a O major O facilitator O superfamily O type O transporter O [ O 342 O ] O . O Furthermore O , O the O EcdB O TF O also O showed O similarity O with O other O in-cluster O TF O of O fungal O secondary O metabolite O such O as O AfoA O , O CtnR O , O Dep6 O , O CurR O , O RhaR O and O Sol4 O which O regulate O asperfuranone O , O citrinin O , O depudecin O , O dehydrocurvularin O , O L-rhamnose O , O and O solanopyrone O biosynthetic O gene O cluster O respectively O . O The O LOL O cluster O of O E. O brachyelytri O E4804 O , O which O accumulates O AcAP O without O an O ether O bridge O , O had O an O inactive O lolO O gene O due O to O an O internal O deletion O , O and O also O lacked O functional O lolN O , O lolM O , O and O lolP O genes O . O Kanamycin O A O yields O were O 4059±204 O and O 4161±269 O μg/mL O , O respectively O ( O Fig O 5B O ) O . O On O the O other O hand O , O in O bud O flowers O , O the O monoterpenes O compounds O were O shown O as O the O main O group O ( O 1.11 O % O ) O , O followed O by O one O diterpene O and O one O sesquiterpene O compound O represented O ( O 0.48 O and O 0.03 O % O ) O , O respectively O . O In O addition O to O the O precursor O peptide O named O LclA O the O gene O cluster O encodes O a O transporter O ( O LclB O ) O and O an O additional O protein O that O is O important O for O immunity O ( O Figure O O O 10A O ) O While O friulimicin O B O inhibits O the O cell O wall O precursor O cycle O , O the O exact O mechanism O of O action O of O laspartomycin O remains O to O be O clarified O [ O 269 O ] O . O In O the O case O of O alpiniamide O D O , O module O 2 O is O probably O skipped O entirely O during O the O biosynthesis O since O it O lacks O the O C-1 O and O C-2 O part O of O the O molecule O . O The O dehydrated O precursor O peptide O to O prochlorosin O 1.6 O ( O Figure O 25 O ) O also O potentially O contains O this O motif O but O the O sites O of O dehydration O , O and O its O ring O topology O and O stereochemistry O , O have O not O yet O been O determined O . O Tobramycin O is O 3′-deoxykanamycin O B. O The O biosynthetic O gene O clusters O were O cloned O from O Streptoalloteichus O tenebrarius O and O Streptoalloteichus O hindustanus O [ O 30,32,33 O ] O ( O GB O Nos. O AJ579650 B-bgc-accession , O and O AJ810851 B-bgc-accession ) O . O Antiproliferative O Activity O OMS O A O was O also O reported O to O display O cytotoxicity O against O human O lung O cancer O A549 O , O colon O cancer O HCT116 O , O stomach O cancer O SNU638 O , O liver O cancer O SK-HEP-1 O , O and O breast O cancer O MDA-MB-231 O cell O lines O , O which O are O major O solid-cancer O types O , O whereas O it O did O not O show O antiproliferative O effect O against O the O normal O lung O fibroblast O MRC-5 O cell O line O [ O 1 O ] O . O In O addition O the O antB O and O antC O promoters O must O be O regulated O by O a O transcription O factor O encoded O outside O of O the O ant O gene O cluster O since O they O are O upregulated O at O 18 O h O relative O to O 42 O h O growth O . O Trioxacarcins O ( O TXNs O ) O are O highly O oxygenated O , O polycyclic O aromatic O natural O products O with O remarkable O biological O activity O and O structural O complexity O . O Goettingen O , O P. O thermopropionicum O SI O ; O Numbers O represent O the O locus O tag O for O each O gene O within O the O genome O sequence O of O each O organism O . O The O final O module O of O AprL O is O highly O unusual O . O The O genomic O organization O of O the O pam O cluster O revealed O a O size O of O ∼60 O O O kb O comprising O five O NRPS O genes O , O two O PKS O genes O , O and O two O NRPS/PKS O hybrid O genes O ( O gene O locus O tags O ERIC2_c18040 O – O ERIC2 O _ O c180170 O ) O ( O Fig.2 O , O Table O S1 O ) O Within O the O actinomycin O BGC O in O S. O costaricanus O SCSIO O ZS0073 O , O we O identified O a O cytochrome O P450 O gene O , O acnP O , O that O encodes O a O 436 O aa O protein O . O It O has O an O immunosuppressive O activity O and O is O a O virulent O factor O of O the O human O fungal O pathogens O . O These O gene O clusters O are O typically O present O in O blocks O of O genes O that O appear O to O be O integrated O into O specific O sites O in O the O P. O syringae O core O genome O . O This O would O probably O increase O the O specificity O of O substrate O recognition O , O as O in O the O cases O of O SbzC O and O SbzI. O Enzymes O involved O in O biogenesis O of O sulfonamide O To O elucidate O the O biosynthesis O of O sulfonamide O and O the O N O – O S O bond-forming O reaction O , O we O tested O the O gene O deletions O of O sbzF O , O H O , O J O , O and O M O – O Q O ( O Supplementary O Table O O O 1 O ) O Sactipeptides O Sactipeptides O or O sactibiotics O ( O sulphur O to O alpha-carbon O antibiotic O ) O are O peptides O in O which O a O sulfur O bridge O is O post-translationally O formed O between O a O cysteine O residue O and O the O α-carbon O of O another O residue O ( O Figure O O O 5B O & O C O ) O , O in O contrast O to O lanthipeptides O where O the O sulfur O bridge O is O installed O via O the O β-carbon O [ O 1 O , O 34 O ] O The O presumably O nonenzymatic O hydrolysis O of O N-terminal O Dha O or O Dhb O that O occurs O upon O leader O peptide O proteolysis O to O afford O N-terminal O 2-oxopropionyl O and O 2-oxobutyryl O groups O , O respectively O , O is O seen O in O both O class O I O and O II O lanthipeptides O ( O e.g. O , O Pep5 O and O pinensin O from O class O I;276 O lichenicidin O , O lacticin O 3147 O , O and O lactocin O S O from O class O II O ; O Figures O 5 O , O 23 O , O and O 40).410 O In O addition O , O disulfide O formation O is O observed O in O class O II O and O class O III O , O with O examples O in O class O II O including O haloduracin O α O and O bovicin O HJ50 O ( O Figure O 21 O ) O . O Half O of O the O 12 O hybrid O species O investigated O had O EAS O clusters O , O and O each O of O three O hybrid O species O , O E. O canadensis O , O N. O coenophialum O and O FaTG-2 O ( O G2 O ) O , O had O EAS O clusters O from O two O different O ancestors O . O Perhaps O the O crosstalk O between O primary O and O secondary O metabolisms O provides O a O unique O advantage O for O antibiotic-producing O strains O to O balance O the O excess O of O nutrient O substances O and O survive O in O harsh O , O nutrient-limited O environments O [ O 27,28 O ] O . O In O general O , O biosynthetic O enzymes O involved O in O lanthipeptide O biosynthesis O have O been O given O the O generic O prefix O Lan,152 O with O a O more O specific O descriptor O for O specific O compounds O ( O e.g. O , O Nis O for O nisin O , O Lct O for O lacticin O 481 O , O Cin O for O cinnamycin O ) O . O Natamycin O is O a O polyene O macrolide O antifungal O antibiotic O . O At O the O left O end O of O the O cluster O , O a O gene O coding O for O an O unknown O protein O ( O orf3 O ) O and O several O others O coding O for O regulatory O proteins O ( O orf1 O , O orf2 O and O arpRI O ) O were O located O . O The O fermentation O broth O , O produced O by O double O cross-over O mutants O , O was O extracted O with O ethyl O acetate O and O analysed O for O the O presence O of O filipin O III O ( O the O major O component O of O the O filipin O complex O ) O . O The O gene O cluster O for O the O biosynthesis O of O thienamycin O is O located O in O the O plasmid O of O S. O cattleya O [ O 467,468 O ] O ( O GB O No. O AJ421798 B-bgc-accession ) O . O Most O ORFs O shown O in O blue O have O roles O the O synthesis O and O activation O of O phosphonoformate O , O an O early O intermediate O . O Chemical O and O Enzymatic O Synthesis O of O Capuramycin O and O Analogs O Since O the O structural O elucidation O of O capuramycin O in O 1988 O [ O 33 O ] O , O a O few O total O syntheses O have O been O independently O reported O . O The O first O three O genes O , O wxoA O ( O encodes O a O predicted O epimerase O ) O , O wxoB O and O wxoC O ( O both O encode O predicted O glycosyl O transferases O ) O have O been O described O earlier O . O In O contrast O , O E. O glyceriae O E277 O , O E. O typhina O E5819 O , O and O the O two O E. O festucae O isolates O lacked O lpsC O , O consistent O with O the O observation O that O E. O festucae O Fl1 O produced O an O ergopeptine O ( O ergovaline O ) O but O not O EN O or O LAH O . O For O these O 78 O cps O , O a O total O of O 1515 O coding O sequences O were O annotated O , O including O galF O ( O n O O O = O O O 79 O ) O , O cpsACP O ( O n O O O = O O O 80 O ) O , O wzi O ( O n O O O = O O O 78 O ) O , O wza O ( O n O O O = O O O 81 O ) O , O wzb O ( O n O O O = O O O 78 O ) O , O wzc O ( O n O O O = O O O 78 O ) O , O gnd O ( O n O O O = O O O 79 O ) O , O manB O ( O n O O O = O O O 43 O rmlB O ( O n O O O = O O O 29 O ) O , O rmlC O ( O n O O O = O O O 30 O ) O , O rmlD O ( O n O O O = O O O 30 O ) O , O wcaJ O ( O n O O O = O O O 40 O ) O , O wbaP O ( O n O O O = O O O 39 O ) O , O gmd O ( O n O O O = O O O 6 O ) O , O wcaG O ( O n O O O = O O O 6 O ) O , O glf O ( O n O O O = O O O 5 O ) O , O wzx O ( O n O O O = O O O 77 O ) O glycosyl O hydrolase O ( O n O O O = O O O 33 O ) O , O acetyltransferases O ( O n O O O = O O O 35 O ) O , O pyruvyltransferases O ( O n O O O = O O O 35 O ) O , O transposases O ( O n O O O = O O O 21 O ) O , O nitroreductase O ( O n O O O = O O O 2 O ) O , O potassium/proton O antiporter O ( O n O O O = O O O 2 O ) O , O tail O fiber O ( O n O O O = O O O 4-epimerase O ( O n O O O = O O O 1 O ) O , O carbohydrate O lyase O ( O n O O O = O O O 1 O ) O , O CMP-N-acetylneuraminic O acid O synthetase O ( O n O O O = O O O 1 O ) O , O coenzyme O F420 O hydrogenase O ( O n O O O = O O O 1 O ) O and O hypothetical O proteins O ( O n O O O However O , O the O predicted O substrate O specificity O of O AT0 O in O the O loading O module O is O methylmalonyl-CoA O instead O of O malonyl-CoA. O Interestingly O , O the O rdm O cluster O contains O a O five-gene O regulation O system O RdmACDEF O , O which O is O different O from O other O reported O polyene O gene O clusters O . O Fosfomycin O has O a O unique O chemical O structure O , O containing O a O carbon-phosphorus O and O an O epoxide O . O Insertion O of O IS10 O occurred O after O nucleotide O 12871 O of O GenBank O accession O number O HQ172897 B-bgc-accession and O resulted O in O the O duplication O of O residues O 12863 O to O 12871 O . O In O U. O maydis O , O localization O studies O using O fluorescently O labeled O siderophore O analogs O suggests O ferrichrome O A O may O function O as O both O an O extracellular O and O intracellular O siderophore O for O iron O scavenging O and O storage O respectively O [ O 43 O ] O . O A O second O series O of O vectors O was O therefore O constructed O exploiting O the O adenine O auxotrophy O of O A. O oryzae O NSAR1 O and O which O contained O combinations O of O str10 O , O str8 O and O str11 O , O which O encode O a O CoA O ligase O , O a O non-haem O iron O oxygenase O and O a O PAL O respectively O ( O see O O O Supplementary O Methods O ) O Specifically O , O an O extra O dioxygenase O ( O sxtdiox O , O present O in O R. O brookii O ) O , O two O additional O sulfotransferases O ( O sxtN2 O and O sxtSUL O ( O present O in O R. O brookii O ) O , O two O additional O exporters O ( O sxtM1 O and O sxtM2 O ) O , O and O a O novel O acyl O transferase O ( O sxtACT O ) O define O the O L. O wollei O pathway O . O Antimicrobial O activity O was O quantified O by O measuring O the O diameter O of O the O inhibition O halo O ( O mm O ) O , O considering O as O positive O results O only O diameters O higher O than O 3 O mm O . O To O date O , O characterized O labionin-containing O lanthipeptides O are O the O labyrinthopeptide O [ O 21 O ] O , O erythreapeptin O [ O 26 O ] O , O avermipeptin O [ O 26 O ] O , O griseopeptin O [ O 26 O ] O , O catenulipeptin O [ O 27 O ] O and O NAI112 O [ O 23 O ] O . O Thus O , O polyketide O compounds O are O discussed O at O first O , O focusing O mainly O on O their O self-resistance O to O phycotoxins O . O Introduction O Saxitoxin O and O its O derivatives O , O collectively O termed O paralytic O shellfish O toxins O ( O PST O ) O , O are O a O group O of O low O molecular O weight O , O highly O potent O neurotoxic O alkaloids O which O inhibit O nerve O conduction O and O muscle O contraction O by O selectively O binding O and O blocking O of O sodium O channels O . O Their O respective O overlapping O glycosyltransferase O genes O ( O XALc_0365 O and O XALc_1144 O ) O share O 62 O % O amino O acid O similarity O ( O Additional O file O 3 O ) O . O Two O putative O polyketide O cyclases O , O RubE5 O and O RubE6 O , O are O also O found O within O the O rub O gene O cluster O and O share O high O sequence O similarity O with O the O cyclase/dehydratase O protein O ZhuJ O ( O 69 O % O identity O ) O and O cyclase O ZhuI O ( O 79 O % O identity O ) O , O respectively25 O . O Two O separate O clusters O are O clearly O distinguished O ( O Fig O 4 O ) O : O the O sxt O gene O cluster O of O Norwegian O strain O NIVA-CYA O 851 O is O most O closely O related O to O A. O gracile O strain O NH-5 O , O and O both O cluster O together O with O German O strain O NIVA-CYA O 655 O . O Furthermore O , O proteins O important O for O secretion O are O also O located O within O several O of O the O gene O clusters O ( O Figure O O O 8A).Table O 7 O Detected O putative O NHLP/Niff11-like O gene O cluster O PhylumPrecursor O (Leader O : O Core)+ O Gene O tag O of O precursor O peptidesReference O # O Eggerthellalenta O VPI O 0255Actinobacteria121 O ( O 71:50 O ) O Elen_2949 O 122 O ( O 71:51 O ) O Elen_2953 O 130 O ( O 71:59 O ) O Elen_2954 O Desulfarculusbaarsii O 2st14 O , O 2075δ- O Proteobacteria111 O ( O 71:40 O ) O Deba_2490 O Syntrophomonas O wolfei O subsp O . O As O shown O in O Fig. O 3 O , O the O recombinant O S. O avermitilis O gained O the O ability O to O produce O Tü O 3010 O at O levels O comparable O to O those O produced O by O S. O thiolactonus O NRRL O 15439 O , O clearly O demonstrating O that O thiotetronate O biosynthesis O relies O on O hijacking O of O a O sulfur O supply O mechanism O from O primary O metabolism O . O Moreover O , O the O involvement O of O the O M13 O DH O domain O ( O GonP5 O ) O in O the O polyketide O biosynthesis O is O unlikely O due O to O the O lack O of O a O KR O domain O in O this O module O catalyzing O a O previous O ketoreduction O reaction O . O Similar O type O of O gene O clusters O are O found O in O biosyntheses O of O microcins O that O are O produced O by O Gram-negative O bacteria O [ O 126 O ] O , O bacteriocins O in O Gram-positive O bacteria O [ O 127 O ] O , O microviridin O in O cyanobacteria O [ O 128 O ] O , O and O goadsporin O in O Streptomyces O [ O 129 O ] O . O Finally O , O a O α-humulene/β-caryophyllene O synthase O ( O SoHUMS O ) O gene O showed O the O highest O expression O levels O in O stems O , O followed O by O young O leaves O , O old O leaves O , O bud O flowers O and O flowers O . O Results O Predicting O the O atc O biosynthetic O gene O cluster O in O a O different O organism O The O published O atc O biosynthetic O gene O cluster O in O Streptomyces O sp. O T676 O comprises O nine O genes/proteins O ( O AtcA-AtcI O , O accession O no. O LN871452 B-bgc-accession ) O , O where O four O of O them O ( O AtcC-AtcF O ) O have O been O proposed O to O be O functionally O involved O in O the O generation O of O anthracimycin O . O Acetyltransferase O activity O was O reported O to O be O involved O in O the O self-resistance O in O kasugamycin-producing O S. O kasugaensis O [ O 65 O ] O . O TRI8 O Alexander O et O al. O [ O 42 O ] O reported O that O , O in O Fusarium O , O 3-ADON O and O 15-ADON O are O important O chemotypes O that O differ O at O the O intra-specific O and O inter-specific O levels O and O confirmed O the O genetic O basis O for O this O difference O in O chemotype O based O on O TRI8-specific O primers O for O genotype O characterization O of O F. O graminearum O . O Gene O acmE O located O between O acmD O and O acmF O whose O translated O product O weakly O resemble O an O aminopeptidase O from O Xanthomonas O campestris O ( O accession O number O BAA11623 B-bgc-accession , O 20 O % O identity O ) O which O have O been O demonstrated O in O vitro O to O catalyse O a O hydrolysis O reaction O of O ascamycin O to O dealanylascamycin O causing O the O host O to O become O susceptible O to O ascamycin O [ O 36 O ] O . O Also O , O the O type O F7 O toxin O gene O cluster O lacked O a O botR O regulatory O gene O , O as O is O the O case O with O the O nonproteolytic O C. O botulinum O type O E O , O nonproteolytic O C. O butyricum O type O E O and O nonproteolytic O C. O botulinum O type O F6 O toxin O gene O clusters O [ O 8 O ] O , O [ O 16 O ] O , O [ O 32 O ] O . O We O investigated O the O occurrence O of O type O III O pks O genes O in O Mmar O . O Furthermore O , O three O ABC O transporter O genes O are O present O , O adjacent O to O the O tleABC O genes O . O Proposed O Function O A-500359 O A-503083 O A-102395 O Fe(II)- O and O αKG-dependent O dioxygenase O orf7 O capD O cpr18 O Capuramycin-2′-O-carbamoyltransferase O orf8 O capB O NA O Putative O 3-ketoreductase O orf9 O capC O cpr20 O Fe(II)-dependent O , O αKG O : O UMP O dioxygenase O orf10 O capA O cpr19 O Putative O 2,3-dehydratase O orf11 O capE O cpr21 O Putative O 4-epimerase O orf12 O capF O cpr22 O PLP-dependent O monooxygenase-decarboxylase O orf12 O ’ O cap15 O cpr23 O Putative O glycosyl O transferase O orf13 O capG O cpr24 O l-Thr O : O uridine-5′-aldehyde O transaldolase O orf14 O capH O cpr25 O Putative O pyrophosphatase O orf15 O capI O cpr26 O Putative O CO O dehydrogenase O orf16 O capJ O cpr28 O Putative O O-methyltransferase O orf16 O ’ O capK O cpr29 O Putative O CO O dehydrogenase O orf17 O capL O cpr30 O Putative O CO O dehydrogenase O orf18 O capM O cpr31 O Putative O ABC O transporter O orf19 O capN O NA O Putative O ABC O transporter O orf20 O capO O NA O Capuramycin O 3′′-phosphotransferase O orf21 O capP O cpr17 O UDP-glucose-4,6-dehydratase O orf22 O capQ O NA O Glucose-1-phosphate O thymidylyltransferase O orf23 O capR O NA O Putative O carboxyl O methyltransferase O orf24 O capS O cpr27 O Putative O l-ACL O C-methyltransferase O orf25 O capT O NA O Nonribosomal O peptide O synthetase O orf26 O capU O NA O Nonribosomal O peptide O synthetase O orf27 O capV O NA O Transacylase O orf28 O capW O cpr51 O Antimycobacterial O activities O of O several O capuramycin O analogs O prepared O through O semisynthesis O . O Our O findings O suggest O that O Pse O biosynthesis O in O T. O forsythia O ATCC O 43037 O follows O essentially O the O same O biosynthetic O route O as O in O C. O jejuni O and O H. O pylori O ( O Schoenhofen O et O al. O 2006b O ) O . O To O increase O sensitivity O , O we O adopted O a O liquid O phase O hemolysis O assay O . O Besides O its O inhibitory O effect O against O cancer O cell O growth O , O the O anti-metastatic O activity O of O compound O 4 O against O AGS O gastric O cancer O cell O line O was O also O determined O through O migration O and O invasion O assays O . O Regulation O of O antimycin O biosynthesis O by O the O orphan O ECF O RNA O polymerase O sigma O factor O σAntA O Antimycins O are O an O extended O family O of O depsipeptides O that O are O made O by O filamentous O actinomycete O bacteria O and O were O first O isolated O more O than O 60 O years O ago O . O Most O of O the O epichloae O had O approximately O 11 O Mb O of O coding O sequence O , O with O the O exception O of O E. O glyceriae O E277 O , O which O had O 14.9 O Mb O of O coding O sequence O . O Chlorothricin O is O a O medium-sized O spirotetronate O class O antibiotic O , O and O inhibits O pyruvate O carboxylases O from O rat O liver O and O Azotobacter O vinelandii O and O cholesterol O biosynthesis O . O LangelandFirmicutes O CLI_0567 O clostridiolysin O S O Thermoanaerobacter O mathranii O mathranii O A3 O , O DSM O 11426Firmicutes O Tmath_0475 O * O * O M. O smegmatis O M. O abscessus O M. O chelonae O Gene O Gene O n O ° O Proposed O function(a O ) O Gene O n O ° O % O ( O b O ) O Gene O n O ° O % O ( O b O ) O O O mmpS4 O MSMEG0373 O Membrane O associated O The O polymyxin O biosynthetic O gene O cluster O was O cloned O from O P. O polymyxa O and O characterized O [ O 316 O ] O . O Fortimicin O ( O astromicin O ) O is O an O aminoglycoside O antibiotic O that O is O produced O by O Micromonospora O olivasterospora O , O and O fmrO O encoding O 16S O rRNA O methyltransferase O , O plays O a O role O in O self-resistance O [ O 396 O ] O . O Results O Screening O of O a O cosmid O library O of O S. O griseus O genomic O DNA O As O screening O probes O , O the O DNA O fragments O of O KS O , O ALS O and O FkbH-like O protein O were O firstly O amplified O from O S. O griseus O DSM O 2608 O chromosomal O DNA O . O RSK2980 O ] O Sequence O ID O : O ref|YP_001569863.1| O 67/81 O 11 O wbuC O 12380:12877 O 165 O unknown O conserved O LPS O biosynthetic O protein O [ O Salmonella O enterica O subsp O . O The O species O include O Y. O pseudotuberculosis/Y. O pestis O , O Y. O similis O ( O Sprague O et O O O al. O 2008 O ) O and O the O newly O characterised O Y. O wautersii O ( O previously O referred O to O as O the O ‘ O Korean O group O ’ O ) O that O is O proposed O to O have O pathogenic O potential O ( O Savin O et O O O al. O 2014 O These O findings O are O not O only O of O significance O in O elucidating O and O understanding O host O – O pathogen O interactions O but O also O within O the O context O of O the O quest O for O new O compounds O with O antibiotic O activity O for O drug O development O . O At O the O right O end O of O the O gene O cluster O , O a O protein O encoded O by O notR O showed O 38 O % O sequence O identity O to O the O AflJ O aflatoxin O pathway O transcriptional O co-activator10 O . O We O have O identified O novel O clusters O , O both O with O single O and O two O LanM O determinants O , O in O four O representatives O of O Streptomyces O ( O Fig. O 2 O ) O , O which O are O discussed O here O . O Relaxed O fatty O acid O specificity O during O lipoinitiation O by O XtlA O ( O acylation O with O 3-hydroxydodec-5-enoate O instead O of O 3-hydroxydecanoate O ) O and O for O incorporation O of O the O ultimate O amino O acid O by O XtlC O ( O valine O instead O of O isoleucine O ) O account O for O the O production O of O the O minor O structural O variants O xantholysin O C O and O B O , O respectively O . O From O this O point O , O it O is O intriguing O to O consider O that O pya22 O , O pya23 O and O pya24 O may O encode O another O set O of O standalone O NRPS O domains O , O which O are O specifically O involved O in O the O biosynthesis O of O the O formyl O group O containing O pyrrolamides O such O as O 2 O and O 3 O . O While O Brevibacterium O , O Bacillus O and O Pelagibacter O were O known O as O marine O phenazine O producers O [ O 36–38 O ] O , O this O is O the O first O time O that O representatives O of O the O genera O Micromonospora O , O Kiloniella O and O Pseudovibrio O were O identified O as O marine O phenazine O producers O as O well O . O Results O A O region O of O 13,778 O base O pairs O of O DNA O from O the O S. O filipinensis O genome O was O isolated O , O sequenced O , O and O characterized O . O C)amb O gene O cluster O from O Fischerella O ambigua O UTEX O 1903 O [ O 7 O ] O . O [ O Streptomyces O sp. O 275]100 O % O srcmRII O PadR O family O transcriptional O regulator186CmmRII O [ O Streptomyces O griseus O subsp O . O inebrians O E818 O was O arranged O similarly O to O that O of O P. O ipomoeae O and O the O Claviceps O species O , O it O was O broken O into O two O clusters O , O one O of O which O ended O in O a O telomere O located O one O bp O from O the O cloA O stop O codon O . O Cultures O of O all O eight O available O isolates O of O six O Metarhizium O species O , O but O not O of O M. O album O , O produced O detectable O levels O of O swainsonine O ( O Table O S1 O in O File O S1 O ) O , O showing O a O strong O correlation O of O SWN O cluster O presence O and O swainsonine O production O . O – O – O II O – O – O – O – O idtJ O Another O ORF O ( O nocP O ) O was O annotated O as O a O simple O PKS O gene O . O If O the O proposed O pathway O ( O intramolecular O hydroalkoxylation O at O C-8 O ) O proceeds O enzymatically O ( O catalyzed O by O MarG O ) O , O then O the O premarineosin O A O ( O 9 O ) O might O be O the O intermediate O of O marineosins O A O and O B. O It O is O noteworthy O that O the O premarineosin O B O ( O 11 O ) O most O likely O arises O from O an O inversion O of O the O aminal O nitrogen O of O premarineosin O A O ( O 9 O ) O under O pathway O conditions O where O the O two O isomers O differ O only O in O stereochemistry O at O the O spiro O aminal O carbon O ( O C-8 O ) O . O These O results O confirm O that O TalE O catalyzes O the O second O step O in O the O biosynthesis O of O 1 O and O 2 O using O the O TalD O product O 4 O and O ATP O as O substrates O to O form O 5 O . O A O likely O product O from O cluster O 5 O was O predicted O as O ectoine O , O its O BGC O has O high O similarity O with O its O counterpart O in O Streptomyces O anulatus O . O Polyketides O are O biosynthesized O via O the O sequential O condensations O of O small O carboxylic O acid O subunits O with O an O acyl O starter O in O a O fashion O that O is O reminiscent O of O fatty O acid O biosynthesis O . O Among O them O , O six O genes O , O fusA O , O fusB2 O , O fusB3 O , O fusB4 O , O fusC2 O and O fusD O encode O proteins O with O high O sequence O similarity O ( O 37%-65 O % O identity O ) O to O those O encoded O by O helA O , O helB2 O , O helB4 O , O helB1 O , O helC O and O helD2 O in O the O gene O cluster O of O helvolic O acid O . O Restoration O of O antifungal O production O close O to O wild O type O levels O indicates O that O control O of O filipin O production O by O phosphate O is O mediated O by O PhoRP O in O S. O filipinensis O . O In O addition O to O revealing O plausible O candidates O for O the O biosynthetic O gene O clusters O for O thiotetronates O ( O 1 O ) O and O ( O 4 O ) O , O a O search O of O published O genome O sequences O using O the O bioinformatics O tool O antiSMASH3 O revealed O a O gene O cluster O similar O to O that O for O TLM O in O the O fully-sequenced O genome O of O Streptomyces O cattleya O NRRL O 8057 O (SCAT5757-SCAT5761).45 O Manual O BLAST O searching O uncovered O a O further O two O Tü O 3010-like O gene O clusters O in O , O respectively O , O Streptomyces O afghanensis O 277 O ( O NCBI O identifiers O EPJ35918 B-bgc-accession to O EPJ34243 B-bgc-accession ) O and O Streptomyces O incarnatus O NRRL O 8089 O ( O NCBI O identifiers O ABB07_06605 O to O ABB07_06685 O ) O . O In O this O test O , O S. O salivarius O G32 O and O S. O dysgalactiae O 61 O both O gave O P-type O 436 O inhibitory O profiles O identical O to O that O of O S. O pyogenes O FF22 O ( O Table O 1 O ) O . O hydrophila O ATCC O 7966 O 100 O YP_857391 B-bgc-accession ORF10 O 10651 O .. O 11673 O RimK-like O protein O rimK O Aeromonas O hydrophila O subsp O . O Enediyne O Antitumor O Antibiotics O The O enediyne O antitumor O antibiotics O are O a O growing O family O of O natural O products O with O novel O molecular O architecture O with O triple O bonds O , O and O unique O biological O activity O . O A O set O of O eight O genes O , O designated O lomo1–8 O , O were O most O likely O to O code O for O enzymes O relating O to O the O shikimate O pathway O [ O 2 O ] O . O It O is O tempting O to O speculate O that O they O may O be O involved O in O the O formation O of O the O N-oxide O group O found O in O JBIR-46 O and O JBIR-48 O , O but O so O far O there O is O no O direct O evidence O to O support O this O speculation O . O A. O circinalis O AWQC131C O PST O biosynthesis O gene O cluster O is O available O under O accession O number O DQ787201 B-bgc-accession . O and O Aspergillus O spp O . O The O results O revealed O that O only O the O addition O of O the O ferric O iron O salt O FeCl3 O ( O as O well O as O the O addition O of O ferrous O iron O FeSO4 O ; O data O not O shown O ) O triggered O production O of O the O green O pigmented O ferroverdin O A O by O S. O lunaelactis O MM109 O T O ( O Fig. O O O 2A O ) O In O addition O to O structural O or O defensive O roles O during O fungal O disease O , O recent O work O in O M. O fijiensis O demonstrated O that O DHN-melanin O generates O highly O reactive O oxygen O species O that O may O facilitate O host O cell O death O [ O 53 O ] O . O The O biosynthetic O gene O cluster O was O cloned O from O Saccharothrix O ( O Lechevalieria O ) O aerocolonigenes O [ O 380,381 O ] O . O It O should O be O noted O that O AviCys O residues O are O also O observed O in O two O other O classes O of O RiPP O natural O products O , O namely O linaridins297,298 O and O thioviridamides.299 O Although O linaridins O such O as O cypemycin297 O and O grisemycin298 O contain O the O dehydro O amino O acid O Dhb O , O the O biosynthetic O gene O clusters O for O these O molecules O do O not O encode O obvious O homologues O of O either O the O lanthipeptide O dehydratase O that O is O necessary O for O installation O of O the O Dha/Dhb O or O the O lanthipeptide O cyclase O implicated O in O AviCys O formation O . O jejuni O legI O (Cj1327)56391Legionaminic O acid O synthaseSchoenhofen O et O al. O (2009)BFO_1063C O . O These O results O confirm O that O non-identical O parts O of O the O puwainaphycin O variants O are O situated O in O the O unusual O FA O aliphatic O chain O whereas O the O remaining O part O of O the O molecule O is O identical O for O all O the O puwainaphycin O analogs O , O based O on O the O PUW-F/PUW-G O structures O . O The O NRPS O OhmA O encodes O 12 O modules O containing O the O entire O 41 O domains O . O The O lipotetradecadepsipeptides O are O assembled O by O XtlA O , O XtlB O and O XtlC O , O three O co-linearly O operating O non-ribosomal O peptide O synthetases O ( O NRPSs O ) O displaying O similarity O in O modular O architecture O with O the O entolysin-producing O enzymes O of O the O entomopathogenic O Pseudomonas O entomophila O L48 O . O Considering O the O puwainaphycin O F/G O variants O reported O in O this O study O , O the O A-domain O appears O to O accept O both O asparagine O and O glutamine O as O a O substrate O at O a O defined O rate O , O as O further O demonstrated O by O MS O measurements O . O Antibiotic O production O in O S. O natalensis O , O S. O lividans O and O S. O lydicus O ΔphoP O mutants O is O also O sensitive O to O high O Pi O concentrations O [ O 22,33,34 O ] O , O thus O it O seems O likely O that O a O yet O unidentified O PhoP-independent O mechanism O blocks O antibiotic O biosynthesis O under O excess O phosphate O conditions O . O We O believe O SMA2293-SMA2288 O ( O alb1–alb6 O ) O form O a O single O operon O since O alb1–alb2 O are O co-transcribed O ( O Figure O 2B O ) O , O there O is O less O than O 5 O bp O between O alb2–3 O and O alb4–5 O , O and O translational O coupling O is O observed O between O alb3–alb4 O ( O see O below O ) O . O Cluster O boundaries O analysis O On O the O cluster O left O side O , O genes O gonMR O , O gonL1 O , O gonL2 O and O gonL3 O were O presumed O to O code O for O pathway-specific O regulators O for O PM100117/18 O biosynthesis O , O and O orf9 O , O which O codes O for O a O putative O dioxygenase O , O was O a O candidate O gene O to O accomplish O polyketide O post-PKS O oxygenations O . O Putative O epipolythiodioxopiperazine O biosynthetic O gene O cluster O Cluster O 9 O contains O a O total O of O 19 O predicted O genes O , O including O a O NRPS O , O and O was O highly O comparable O to O epipolythiodioxopiperazine O ( O ETP O ) O biosynthetic O clusters O from O numerous O fungi O . O Notably O , O CurKC O is O encoded O in O the O genome O of O the O thermophile O Thermomonospora O curvata,131 O which O may O provide O improved O thermostability O of O both O the O final O product O and O the O biosynthetic O enzymes O as O seen O for O the O class O II O lanthipeptide O geobacilin O II.394,486 O Dehydration O via O Phosphorylation O Although O RamC O was O the O first O discovered O class O III O lanthipeptide O synthetase O , O the O extreme O insolubility O of O its O substrate O RamS O precluded O any O in O vitro O studies O . O idtK O – O – O II O , O V O – O II O II O – O idtE O For O Pseudanabaena O sp. O dqh15 O , O total O ion O chromatography O and O mass O spectrum O revealed O that O the O compound O peak O with O a O retention O time O of O 11.64 O min O was O the O main O odorous O component O , O and O this O corresponded O to O 2-MIB O ( O Figure O 2 O ) O . O 99–100%/N O = O 4 O 600 O 87–100 O % O 97–100 O % O TRI13 O cytochrome O P450 O monooxygenase O 1010 O ; O 1060 O 92–100%/N O = O 13 O 99–100%/N O = O 4 O 315 O 76–100 O % O 98–100 O % O TRI14 O unknown O 658 O ; O 660 O 75–100%/N O = O 41 O 97–100%/N O = O 4 O ; O 11 O ; O 8 O 202 O 89–100 O % O 99–100 O % O TRI16 O acyl O transferase O 1143 O 90–100%/N O = O 8 O 99–100%/N O = O 4 O 381 O 60–100 O % O 99–100 O % O TRI101 O acetyl O transferase O 925 O ; O 1244 O 96–100%/N O = O 17 O ; O 33 O 99–100%/N O = O 11 O ; O 8 O ; O 6 O 444 O 79–100 O % O 99–100 O % O TRI1 O cytochrome O P450 O monooxygenase O 664 O ; O 1755 O 94–100%/N O = O 8 O 99–100%/N O = O 100 O 512 O 85–100 O % O 98–100 O % O Commonly O used O primers O designed O against O specific O target O genes O of O the O TRI O gene O cluster O for O Fusarium O . O carnosum O Ta11a O , O the O amino O acid O sequence O of O which O will O be O called O leucocin O B-Ta11a O below O ] O . O Similarly O , O the O transcription O of O remaining O genes O of O the O cluster O was O also O affected O negatively O , O including O the O three O regulatory O genes O filR O , O filF O and O filI O ( O Fig O 3 O ) O . O For O M1152/pEVK13 O ( O kyaR1 O only O ) O , O we O observed O a O zone O of O inhibition O which O was O approximately O three O times O smaller O than O for O the O M1152/pEVK6 O ( O kyaR1L O ) O positive O control O . O We O propose O that O the O glucose-1-phosphate O thymidylyltransferase O (RubS5)32 O and O dTDP-glucose O 4,6-dehydratase O (RubS4)33 O sequentially O transform O glucose-1-phosphate O ( O 9 O ) O to O dTDP-4-keto-6-deoxy-D-glucose O ( O 9b O ) O via O dTDP-D-glucose O ( O 9a O ) O , O followed O by O RubS3-catalysed O ketoreduction O to O dTDP-D-fucose O ( O 9c O ) O ( O Fig. O 3c)34 O . O Introduction O Phenazines O are O important O microbial O secondary O metabolites O . O Lane O 1 O , O DNA O molecular O weight O markers O ; O lanes O 2 O and O 4 O , O S. O suis O 3908 O ; O lanes O 3 O and O 5 O , O S. O suis O 94–623 O ; O lanes O 2 O and O 3 O , O sslA O gene O ; O lanes O 4 O and O 5 O , O gdh O gene O . O The O biosynthetic O gene O cluster O was O cloned O as O 90 O kb O DNA O fragment O [ O 54,55 O ] O ( O GB O No. O AJ862840 B-bgc-accession ) O . O The O fourth O gene O is O wxoD O and O encodes O a O predicted O 327 O amino O acids O long O protein O . O The O cmrA O and O cmrB O genes O encode O the O ABC O transporters O , O and O cmrX O encodes O an O UvrA-like O UV O repair O nuclease O . O It O has O hepatoxic O and O neurotoxic O effects O and O is O a O potential O carcinogen O . O Knockdown O of O ctcS O altered O the O transcription O of O several O biosynthesis-related O genes O and O reduced O the O production O of O tetracycline O ( O TC O ) O and O CTC O , O without O obvious O effect O on O morphological O differentiation O and O cell O growth O . O Only O a O fragmented O part O of O this O gene O is O present O in O the O A. O circinalis O AWQC131C O sxt O gene O cluster O , O while O sxtV O in O the O Aph O . O Their O clinical O use O is O limited O by O their O toxicity O . O As O expected O , O we O retrieved O the O four O Streptomyces O strains O discussed O above O first O but O , O in O addition O , O we O found O sequence O equivalents O for O all O 41 O functional O domains O for O AtcC-AtcF O in O the O genome O of O Nocardiopsis O kunsanensis O , O a O species O belonging O to O the O same O taxonomic O class O ( O Actinobacteria O ) O but O in O a O different O order O ( O Streptosporangiales O ) O compared O to O Streptomyces O ( O Supplementary O Table O S1 O ) O . O This O modification O has O only O been O found O in O the O 19-amino O acid O globular O lanthipeptide O actagardine O ( O also O known O as O gardimycin)452 O and O Ala(0)-actagardine O , O which O differs O from O actagardine O by O a O single O additional O Ala O residue O at O the O N-terminus O ( O Figure O 42).453 O The O structure O of O actagardine O was O determined O by O a O combination O of O Edman O sequencing O , O MS O , O and O NMR O analysis,454−456 O revealing O that O oxidation O occurs O site-selectivity O in O the O D-ring.454 O The O genetic O origin O of O sulfoxide O formation O was O uncovered O through O a O comparison O of O the O gene O clusters O of O actagardine O and O another O lanthipeptide O michiganin O A,86 O which O is O similar O in O structure O to O actagardine O but O lacks O the O sulfoxide.457 O Annotation O of O the O actagardine O gene O cluster O from O Actinoplanes O garbadinensis O ATCC O 31049 O revealed O the O unique O presence O of O a O gene O encoding O a O luciferase-like O flavin-dependent O monoxygenase O termed O garO. O A O ΔgarO O mutant O of O A. O garbadinensis O ATCC O 31049 O produced O only O deoxyactagardine O and O Ala(0)-deoxyactagardine O . O Two O rRNA O methyltransferases O ( O AviRa O and O AviRb O ) O and O two O antibiotic O transporters O ( O AviABC1 O and O AviABC2 O ) O were O clarified O [ O 142 O ] O ( O GB O No. O AF333038 B-bgc-accession ) O . O Methodology/Principal O Findings O The O aim O of O these O studies O was O to O test O if O the O production O of O mersacidin O could O be O transferred O to O a O naturally O competent O Bacillus O strain O employing O genomic O DNA O of O the O producer O strain O . O The O analysis O of O the O resulting O mutant O strain O showed O that O gonP1 O inactivation O abolished O PM100117/18 O biosynthesis O , O thus O confirming O the O implication O of O this O cluster O in O the O production O of O PM100117/18 O ( O Fig. O O O 2b).Fig O Carbomycin O is O a O 16-membered O macrolide O antibiotic O isolated O originally O from O S. O halstedii O and O the O biosynthetic O gene O cluster O was O cloned O from O S. O thermotolerans O ( O GB O No. O The O N-terminal O leader O sequence O of O P. O acnes O 266 O includes O an O additional O 23 O amino O acids O in O comparison O to O the O other O P. O acnes O strains O . O Genetic O Organisation O and O Location O of O the O Subtilomycin O Biosynthetic O Gene O Cluster O As O previously O noted O , O a O single O match O was O found O between O the O primary O amino O acid O sequence O of O the O N-terminal O part O of O subtilomycin O and O the O 5’end O of O a O small O gene O ( O subA O , O 171 O nt O ) O , O located O immediately O upstream O from O ORFs O that O encode O for O proteins O which O have O been O shown O to O be O involved O in O the O processing O of O class O I O lantibiotics O , O such O as O LanB-like O dehydratase O and O LanC-like O cyclase O modification O enzymes O ( O SubB O and O SubC O , O respectively O , O Figure O 4 O ) O . O Although O rubrolone O A O has O shown O no O significant O biological O activity O in O cytotoxicity O and O antimicrobial O assays1 O , O we O recently O isolated O rubrolone O B O ( O 2 O ) O ( O Fig. O 1 O ) O as O a O new O potentially O cardioprotective O rubrolone O from O the O endophytic O strain O Streptomyces O sp. O KIB-H033 O ( O S. O sp. O KIB-H033)5 O . O Individual O retention O time/UV O – O vis O searches O of O the O dominant O 15 O secondary O metabolites O against O our O in-house O pure O metabolite O library O ( O > O 7,100 O standards O ) O also O failed O to O provide O a O single O known O secondary O metabolite O , O further O suggesting O the O strain O was O a O hitherto O unaccounted O species O of O Aspergillus O . O The O six O capsular O types O ( O K1 O , O K6 O , O K16 O , O K54 O , O K58 O , O K63 O ) O that O contain O fucose O as O a O structural O unit O possessed O both O gmd O ( O gene O encodes O GDP-D-mannose O 4 O , O 6-dehydratase O ) O and O wcaG O ( O a O nucleotide O sugar O epimerase/dehydratase O with O bifunctional O activity O : O GDP-4-dehydro-6-deoxy-D-mannose O epimerase O and O GDP-4-dehydro-6-L-deoxygalactose O reductase O ) O genes O , O which O are O responsible O for O conversion O from O GDP-D-mannose O to O GDP-L O fucose32 O . O The O A-503083s O differ O from O the O A-500359s O by O the O presence O of O a O 2′-O-carbamoyl O group O , O which O has O a O minimal O effect O on O TL1 O inhibition O and O anti-TB O activity O . O Purification O and O genetic O characterization O of O gassericin O E O , O a O novel O co-culture O inducible O bacteriocin O from O Lactobacillus O gasseri O EV1461 O isolated O from O the O vagina O of O a O healthy O woman O Background O Lactobacillus O gasseri O is O one O of O the O dominant O Lactobacillus O species O in O the O vaginal O ecosystem O . O Here O , O we O report O the O identification O of O the O previously O uncharacterized O nybomycin O gene O cluster O from O the O marine O actinomycete O Streptomyces O albus O subsp O . O One O knockout O mutant O ( O SOD_c20750 O ) O showed O the O desired O negative O sodorifen O phenotype O . O Bacillus O mojavensis O RO-H-1 O ZP_10514325.1 B-bgc-accession BmojR_010100015748 O 46 O Unknown O LanM O 12 O . O Albeit O mild O , O this O antibacterial O activity O is O in O line O with O other O antifoulant O natural O products O such O as O the O diterpene O dictyol O C28 O or O the O bromopyrrole O oroidin29 O . O To O determine O whether O the O predicted O genes O were O responsible O for O the O biosynthesis O of O KK-1 O , O we O performed O heterologous O production O of O KK-1 O in O Aspergillus O oryzae O by O introduction O of O the O cluster O genes O into O the O genome O of O A. O oryzae O . O The O biosynthetic O gene O cluster O for O landomycin O E O was O cloned O from O S. O globisporus O [ O 360 O ] O , O and O that O for O landomycin O A O was O cloned O from O S. O cyanogenus O [ O 361 O ] O . O The O adenylation O domain O sequences O of O McyB1 O and O McyC O from O Phormidium O sp. O LP904c O might O have O gone O through O recombination O events O because O their O sequences O group O with O sequences O from O different O enzymes O ( O Supplementary O Figure O S10 O ) O . O The O growth O inhibition O activity O in O all O cases O was O restored O ( O Figure O 5 O ) O . O Neomycin O ( O fradiomycin O ) O , O paromomycin O , O and O lividomycin O belong O to O 4,5-disubstitued O DOS-containing O aminoglycoside O antibiotics O . O Bioinformatic O analysis O of O the O substrate O specificity O of O all O nine O adenylation O domains O indicated O that O the O sequence O of O the O NRPS O modules O is O well O collinear O with O the O order O of O amino O acids O in O pelgipeptin O . O Landomycin O E O is O produced O by O S. O globisporus O , O and O shows O antitumor O activity O which O is O only O mildly O affected O by O multidrug O resistance-mediated O drug O efflux O . O Sequences O of O phzE O genes O , O which O are O part O of O the O phenazine O biosynthetic O pathway O , O were O used O to O design O one O universal O primer O system O and O to O analyze O the O ability O of O bacteria O to O produce O phenazine O . O Alkaloid O biosynthesis O gene O origins O in O selected O hybrid O endophyte O strains O a. O E. O can O . O Atypical O Listeria O innocua O strains O possess O an O intact O LIPI-3 O Background O Listeria O monocytogenes O is O a O food-borne O pathogen O which O is O the O causative O agent O of O listeriosis O and O can O be O divided O into O three O evolutionary O lineages O I O , O II O and O III O . O A O manual O genome O annotation O analysis O identified O this O as O the O only O type O III O PKS O gene O cluster O in O the O genome O , O consistent O with O the O antiSMASH O results O . O Puwainaphycin O F O ( O 4-methyl-Ahtea-PUW-F O ) O , O together O with O the O congener O of O m/z O 1118.6 O , O were O found O to O be O dominant O based O on O UV O and O MS O detection O , O other O variants O were O observed O in O trace O amounts O based O on O their O MS O signals O ( O Figure O 3B O ) O . O Furthermore O , O a O mutation O was O detected O in O plnF O structural O gene O which O has O contributed O to O a O longer O bacteriocin O peptide O . O