hajekad's picture
Upload utils.py
ce0d2c6
raw
history blame
8.26 kB
# helpful functions for summary generation
# the code is a customized version of:
# https://github.com/SKRohit/Generating_Text_Summary_With_GPT2/blob/master/utils.py
import json
import math
import torch
import torch.nn.functional as F
from transformers import GPT2TokenizerFast
#from tqdm import tnrange
import nltk
# nltk.download('punkt')
from nltk.tokenize import sent_tokenize
def print_summary(context, gen_summary, gold_summary):
print('input_text', end='\n\n')
print(context, end='\n\n')
print("generated_summary", end='\n\n')
print(gen_summary, end='\n\n')
print('golden_summary', end='\n\n')
print(gold_summary, end='\n\n')
def add_special_tokens(tokenizer_path):
""" Returns GPT2 tokenizer after adding separator and padding tokens """
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_path, pad_token='<|endoftext|>')
special_tokens = {'sep_token':'<|sep|>'}
num_add_toks = tokenizer.add_special_tokens(special_tokens)
return tokenizer
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = filter_value
return logits
def sample_seq_fast(model, context, length, num_sentences, device, temperature=1, top_k=0, top_p=0.0, eos_stopping=False):
""" Generates a sequence of tokens
Args:
model: gpt/gpt2 model
context: tokenized text using gpt/gpt2 tokenizer
length: length of generated sequence.
device: torch.device object.
temperature >0: used to control the randomness of predictions by scaling the logits before applying softmax.
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
"""
# generates one senence more than wanted
# looks at the generated token and estimates the num of sentences on the go
# after n+1 times ".!?" it takes first n sentences by sent_tokenize
sent_to_gen = num_sentences + 1
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0)
generated = context
with torch.no_grad():
for _ in range(length):
inputs = {'input_ids': generated}
assert len(inputs["input_ids"]) <= 1024 #########################
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][0, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
if not next_token and eos_stopping:
break
generated = torch.cat((generated, next_token.unsqueeze(0)), dim=1)
if not eos_stopping and next_token in [1, 14, 31]:
sent_to_gen -= 1
if not sent_to_gen:
break
return generated
def generate_summary_fast(context_enc, sep_idx, tokenizer, model, num_sentences, temperature=1, top_k=50, top_p=0.5,
device=torch.device('cuda'), eos_stopping=False):
# generates one senence more than wanted
# looks at the generated token and estimates the num of sentences on the go
# after n+1 times ".!?" it takes first n sentences by sent_tokenize
generated_text = sample_seq_fast(model, context_enc, 1024-sep_idx, num_sentences, device, temperature, top_k, top_p, eos_stopping=eos_stopping)
generated_text = generated_text[0, len(context_enc):].tolist()
gen_summary = tokenizer.convert_ids_to_tokens(generated_text,skip_special_tokens=True)
gen_summary = tokenizer.convert_tokens_to_string(gen_summary)
# extract <num_sentences> sentences
if not eos_stopping:
gen_summary.replace("...", ".")
try:
gen_summary = " ".join(nltk.sent_tokenize(gen_summary)[:num_sentences])
except:
pass
return gen_summary
def generate_eval_file(data, data_type, tokenizer, model, save_dir, field, num_sentences=5,
max_summaries=0, temperature=1, top_k=50, top_p=0.5,
device=torch.device('cuda'), eval_step=True, eos_stopping=False, skip=0):
print(data_type)
max_summaries = math.inf if max_summaries == "full" else max_summaries
len_data = min(max_summaries, len(data))
disp_len = "full" if max_summaries == math.inf else len_data
if eos_stopping:
save_file = save_dir + f"/{data_type}_{disp_len}_sent{num_sentences}_eos_topk{top_k}_topp{top_p}.jsonl"
else:
save_file = save_dir + f"/{data_type}_{disp_len}_sent{num_sentences}_topk{top_k}_topp{top_p}.jsonl"
print(f"saving to: {save_file}")
how_open = ""
if skip:
how_open = "a"
else:
how_open = "w+"
with open(save_file, how_open) as output:
for s in range(skip, len_data):
if s%100 == 0:
print(s)
sample = data[s]
sep_idx = sample['sum_idx']
context = sample['input_ids'][:sep_idx].tolist()
gold_summary = sample['input_ids'][sep_idx+1:][:100].tolist()
# generating with the new faster and better method
gen_summary = generate_summary_fast(context, sep_idx, tokenizer, model, num_sentences,
temperature=temperature, top_k=top_k, top_p=top_p,
device=device, eos_stopping=eos_stopping)
if not eval_step:
print_summary(tokenizer.decode(context), gen_summary, tokenizer.decode(gold_summary))
else:
new_doc = {field: gen_summary}
line = json
json.dump(new_doc, output, ensure_ascii=False)
output.write("\n")
def generate_one_summary_fast(input_text, tokenizer, model, num_sentences=3,
temperature=1, top_k=50, top_p=0.5,
device=torch.device('cuda'), eos_stopping=False, sep_tok=True):
context = tokenizer.encode(input_text)
context += [tokenizer.sep_token_id]
gen_summary = generate_summary_fast(context, len(context), tokenizer, model, num_sentences,
temperature=temperature, top_k=top_k, top_p=top_p, device=device,
eos_stopping=eos_stopping)
print_summary(tokenizer.decode(context), gen_summary, "Not Given")
return gen_summary