|
import sys, os, json |
|
root = os.sep + os.sep.join(__file__.split(os.sep)[1:__file__.split(os.sep).index("Recurrent-Parameter-Generation")+1]) |
|
sys.path.append(root) |
|
os.chdir(root) |
|
with open("./workspace/config.json", "r") as f: |
|
additional_config = json.load(f) |
|
USE_WANDB = additional_config["use_wandb"] |
|
|
|
|
|
import random |
|
import numpy as np |
|
import torch |
|
seed = SEED = 999 |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = True |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
|
|
|
|
import math |
|
import random |
|
import warnings |
|
from _thread import start_new_thread |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
if USE_WANDB: import wandb |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torch.nn import functional as F |
|
from torch.cuda.amp import autocast |
|
|
|
from model.pdiff import PDiff as Model |
|
from model.pdiff import OneDimVAE as VAE |
|
from model.diffusion import DDPMSampler, DDIMSampler |
|
from torch.optim.lr_scheduler import CosineAnnealingLR, LinearLR, SequentialLR |
|
from accelerate.utils import DistributedDataParallelKwargs |
|
from accelerate.utils import AutocastKwargs |
|
from accelerate import Accelerator |
|
|
|
from dataset import Cifar100_ResNet18BN as Dataset |
|
from torch.utils.data import DataLoader |
|
|
|
|
|
|
|
|
|
config = { |
|
"seed": SEED, |
|
|
|
"dataset": Dataset, |
|
"sequence_length": 'auto', |
|
|
|
"batch_size": 50, |
|
"num_workers": 25, |
|
"total_steps": 10000, |
|
"vae_steps": 1000, |
|
"learning_rate": 0.0001, |
|
"vae_learning_rate": 0.00002, |
|
"weight_decay": 0.01, |
|
"save_every": 10000//1, |
|
"print_every": 50, |
|
"autocast": lambda i: True, |
|
"checkpoint_save_path": "./checkpoint", |
|
|
|
"test_batch_size": 1, |
|
"generated_path": Dataset.generated_path, |
|
"test_command": Dataset.test_command, |
|
|
|
"model_config": { |
|
|
|
"layer_channels": [1, 64, 128, 256, 512, 256, 128, 64, 1], |
|
"model_dim": 128, |
|
"kernel_size": 7, |
|
"sample_mode": DDPMSampler, |
|
"beta": (0.0001, 0.02), |
|
"T": 1000, |
|
|
|
"channels": [64, 256, 384, 512, 64], |
|
}, |
|
"tag": "compare_pdiff_resnet18bn_vae", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
divide_slice_length = int(2 ** len(config["model_config"]["channels"])) |
|
print('==> Preparing data..') |
|
train_set = config["dataset"]( |
|
dim_per_token=divide_slice_length, |
|
granularity=0, |
|
pe_granularity=0, |
|
fill_value=0. |
|
) |
|
print("Dataset length:", train_set.real_length) |
|
print("input shape:", train_set[0][0].flatten().shape) |
|
if config["sequence_length"] == "auto": |
|
config["sequence_length"] = train_set.sequence_length * divide_slice_length |
|
print(f"sequence length: {config['sequence_length']}") |
|
train_loader = DataLoader( |
|
dataset=train_set, |
|
batch_size=config["batch_size"], |
|
num_workers=config["num_workers"], |
|
persistent_workers=True, |
|
drop_last=True, |
|
shuffle=True, |
|
) |
|
|
|
|
|
print('==> Building model..') |
|
Model.config = config["model_config"] |
|
model = Model(sequence_length=config["sequence_length"]) |
|
vae = VAE(d_model=config["model_config"]["channels"], |
|
d_latent=config["model_config"]["model_dim"], |
|
sequence_length=config["sequence_length"], |
|
kernel_size=config["model_config"]["kernel_size"]) |
|
|
|
|
|
print('==> Building optimizer..') |
|
vae_optimizer = optim.AdamW( |
|
params=vae.parameters(), |
|
lr=config["vae_learning_rate"], |
|
weight_decay=config["weight_decay"], |
|
) |
|
optimizer = optim.AdamW( |
|
params=model.parameters(), |
|
lr=config["learning_rate"], |
|
weight_decay=config["weight_decay"], |
|
) |
|
vae_scheduler = CosineAnnealingLR( |
|
optimizer=vae_optimizer, |
|
T_max=config["vae_steps"], |
|
) |
|
scheduler = CosineAnnealingLR( |
|
optimizer=optimizer, |
|
T_max=config["total_steps"], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator(kwargs_handlers=[kwargs,]) |
|
vae, model, vae_optimizer, optimizer, train_loader = \ |
|
accelerator.prepare(vae, model, vae_optimizer, optimizer, train_loader) |
|
|
|
|
|
|
|
if __name__ == "__main__" and USE_WANDB and accelerator.is_main_process: |
|
wandb.login(key=additional_config["wandb_api_key"]) |
|
wandb.init(project="Recurrent-Parameter-Generation", name=config['tag'], config=config,) |
|
|
|
|
|
|
|
|
|
|
|
print('==> Defining training..') |
|
|
|
def train_vae(): |
|
if not USE_WANDB: |
|
train_loss = 0 |
|
this_steps = 0 |
|
print("==> Start training vae..") |
|
vae.train() |
|
for batch_idx, (param, _) in enumerate(train_loader): |
|
vae_optimizer.zero_grad() |
|
|
|
|
|
with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=config["autocast"](batch_idx))): |
|
param = param.flatten(start_dim=1) |
|
loss = vae(x=param, use_var=False, manual_std=0.01, kld_weight=0.01) |
|
accelerator.backward(loss) |
|
vae_optimizer.step() |
|
if accelerator.is_main_process: |
|
vae_scheduler.step() |
|
|
|
if USE_WANDB and accelerator.is_main_process: |
|
wandb.log({"vae_loss": loss.item()}) |
|
elif USE_WANDB: |
|
pass |
|
else: |
|
train_loss += loss.item() |
|
this_steps += 1 |
|
if this_steps % config["print_every"] == 0: |
|
print('Loss: %.6f' % (train_loss/this_steps)) |
|
this_steps = 0 |
|
train_loss = 0 |
|
if batch_idx >= config["vae_steps"]: |
|
break |
|
|
|
def train(): |
|
if not USE_WANDB: |
|
train_loss = 0 |
|
this_steps = 0 |
|
print("==> start training..") |
|
model.train() |
|
for batch_idx, (param, _) in enumerate(train_loader): |
|
optimizer.zero_grad() |
|
|
|
|
|
with accelerator.autocast(autocast_handler=AutocastKwargs(enabled=config["autocast"](batch_idx))): |
|
param = param.flatten(start_dim=1) |
|
with torch.no_grad(): |
|
mu, _ = vae.encode(param) |
|
loss = model(x=mu) |
|
accelerator.backward(loss) |
|
optimizer.step() |
|
if accelerator.is_main_process: |
|
scheduler.step() |
|
|
|
if USE_WANDB and accelerator.is_main_process: |
|
wandb.log({"train_loss": loss.item()}) |
|
elif USE_WANDB: |
|
pass |
|
else: |
|
train_loss += loss.item() |
|
this_steps += 1 |
|
if this_steps % config["print_every"] == 0: |
|
print('Loss: %.6f' % (train_loss/this_steps)) |
|
this_steps = 0 |
|
train_loss = 0 |
|
if batch_idx % config["save_every"] == 0 and accelerator.is_main_process: |
|
os.makedirs(config["checkpoint_save_path"], exist_ok=True) |
|
state = {"diffusion": accelerator.unwrap_model(model).state_dict(), "vae": vae.state_dict()} |
|
torch.save(state, os.path.join(config["checkpoint_save_path"], config["tag"]+".pth")) |
|
generate(save_path=config["generated_path"], need_test=True) |
|
if batch_idx >= config["total_steps"]: |
|
break |
|
|
|
def generate(save_path=config["generated_path"], need_test=True): |
|
print("\n==> Generating..") |
|
model.eval() |
|
with torch.no_grad(): |
|
mu = model(sample=True) |
|
prediction = vae.decode(mu) |
|
generated_norm = prediction.abs().mean() |
|
print("Generated_norm:", generated_norm.item()) |
|
if USE_WANDB: |
|
wandb.log({"generated_norm": generated_norm.item()}) |
|
prediction = prediction.view(-1, divide_slice_length) |
|
train_set.save_params(prediction, save_path=save_path) |
|
if need_test: |
|
start_new_thread(os.system, (config["test_command"],)) |
|
model.train() |
|
return prediction |
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
train_vae() |
|
vae = accelerator.unwrap_model(vae) |
|
train() |
|
del train_loader |
|
print("Finished Training!") |
|
exit(0) |