metadata
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: AraBERT_token_classification__AraEval24_merged_rassd
results: []
AraBERT_token_classification__AraEval24_merged_rassd
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8706
- Precision: 0.0867
- Recall: 0.0203
- F1: 0.0329
- Accuracy: 0.8593
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6887 | 1.0 | 2878 | 0.7951 | 0.0 | 0.0 | 0.0 | 0.8632 |
0.6215 | 2.0 | 5756 | 0.7865 | 0.0667 | 0.0010 | 0.0020 | 0.8635 |
0.5597 | 3.0 | 8634 | 0.7852 | 0.0901 | 0.0025 | 0.0048 | 0.8634 |
0.5221 | 4.0 | 11512 | 0.7851 | 0.1001 | 0.0115 | 0.0206 | 0.8622 |
0.4521 | 5.0 | 14390 | 0.7992 | 0.0772 | 0.0063 | 0.0117 | 0.8627 |
0.4411 | 6.0 | 17268 | 0.8035 | 0.0873 | 0.0084 | 0.0154 | 0.8625 |
0.4185 | 7.0 | 20146 | 0.8330 | 0.0714 | 0.0092 | 0.0162 | 0.8619 |
0.3954 | 8.0 | 23024 | 0.8511 | 0.0943 | 0.0158 | 0.0271 | 0.8619 |
0.3688 | 9.0 | 25902 | 0.8527 | 0.0936 | 0.0158 | 0.0271 | 0.8608 |
0.3575 | 10.0 | 28780 | 0.8706 | 0.0867 | 0.0203 | 0.0329 | 0.8593 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.12.1
- Datasets 2.13.2
- Tokenizers 0.13.3