MM2157's picture
update model card README.md
6512caa
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: AraBERT_token_classification__AraEval24_merged_rassd
    results: []

AraBERT_token_classification__AraEval24_merged_rassd

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8706
  • Precision: 0.0867
  • Recall: 0.0203
  • F1: 0.0329
  • Accuracy: 0.8593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6887 1.0 2878 0.7951 0.0 0.0 0.0 0.8632
0.6215 2.0 5756 0.7865 0.0667 0.0010 0.0020 0.8635
0.5597 3.0 8634 0.7852 0.0901 0.0025 0.0048 0.8634
0.5221 4.0 11512 0.7851 0.1001 0.0115 0.0206 0.8622
0.4521 5.0 14390 0.7992 0.0772 0.0063 0.0117 0.8627
0.4411 6.0 17268 0.8035 0.0873 0.0084 0.0154 0.8625
0.4185 7.0 20146 0.8330 0.0714 0.0092 0.0162 0.8619
0.3954 8.0 23024 0.8511 0.0943 0.0158 0.0271 0.8619
0.3688 9.0 25902 0.8527 0.0936 0.0158 0.0271 0.8608
0.3575 10.0 28780 0.8706 0.0867 0.0203 0.0329 0.8593

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.12.1
  • Datasets 2.13.2
  • Tokenizers 0.13.3