metadata
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
inference: true
Aligned Diffusion Model via DPO
Diffusion Model Aligned with thef following reward model and DPO algorithm
close-sourced vlm: claude3-opus gemini-1.5 gpt-4o gpt-4v
open-sourced vlm: internvl-1.5
score model: hps-2.1
How to Use
You can load the model and perform inference as follows:
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
pretrained_model_name = "runwayml/stable-diffusion-v1-5"
dpo_unet = UNet2DConditionModel.from_pretrained(
"path/to/checkpoint",
subfolder='unet',
torch_dtype=torch.float16
).to('cuda')
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name, torch_dtype=torch.float16)
pipeline = pipeline.to('cuda')
pipeline.safety_checker = None
pipeline.unet = dpo_unet
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(1)
prompt = "a pink flower"
image = pipeline(prompt=prompt, generator=generator, guidance_scale=gs).images[0]
Citation
@misc{chen2024mjbenchmultimodalrewardmodel,
title={MJ-Bench: Is Your Multimodal Reward Model Really a Good Judge for Text-to-Image Generation?},
author={Zhaorun Chen and Yichao Du and Zichen Wen and Yiyang Zhou and Chenhang Cui and Zhenzhen Weng and Haoqin Tu and Chaoqi Wang and Zhengwei Tong and Qinglan Huang and Canyu Chen and Qinghao Ye and Zhihong Zhu and Yuqing Zhang and Jiawei Zhou and Zhuokai Zhao and Rafael Rafailov and Chelsea Finn and Huaxiu Yao},
year={2024},
eprint={2407.04842},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.04842},
}