metadata
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
inference: true
Aligned Diffusion Model via DPO
Diffusion Model Aligned with thef following reward model and DPO algorithm
close-sourced vlm: claude3-opus gemini-1.5 gpt-4o gpt-4v
open-sourced vlm: internvl-1.5
score model: hps-2.1
How to Use
You can load the model and perform inference as follows:
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
pretrained_model_name = "runwayml/stable-diffusion-v1-5"
dpo_unet = UNet2DConditionModel.from_pretrained(
"path/to/checkpoint",
subfolder='unet',
torch_dtype=torch.float16
).to('cuda')
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name, torch_dtype=torch.float16)
pipeline = pipeline.to('cuda')
pipeline.safety_checker = None
pipeline.unet = dpo_unet
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(1)
prompt = "a pink flower"
image = pipeline(prompt=prompt, generator=generator, guidance_scale=gs).images[0]