jeffliu-LL commited on
Commit
acb094a
1 Parent(s): 641a161

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -168
README.md CHANGED
@@ -1,199 +1,128 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
 
 
 
 
 
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
 
 
 
 
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
 
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
  library_name: transformers
4
+ widget:
5
+ - src: >-
6
+ https://fema-cap-imagery.s3.amazonaws.com/Images/CAP_-_Flooding_Spring_2023/Source/IAWG_23-B-5061/A0005/D75_0793_DxO_PL6_P.jpg
7
+ - example_title: Example classification of flooded scene
8
+ pipeline_tag: image-classification
9
+ tags:
10
+ - LADI
11
+ - Aerial Imagery
12
+ - Disaster Response
13
+ - Emergency Management
14
  ---
15
+ # Model Card for MITLL/LADI-v2-classifier-large-reference
16
+ LADI-v2-classifier-large-reference is based on [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) and fine-tuned on the LADI v2_resized dataset. LADI-v2-classifier is trained to identify labels of interest to disaster response managers from aerial images.
17
 
18
+ 🔴 __IMPORTANT__ ❗🔴 This model is the 'reference' version of the model, which is trained on 80% of the 10,000 available images. It is provided to facilitate reproduction of our paper and is not intended to be used in deployment. For deployment, see the [MITLL/LADI-v2-classifier-small](https://huggingface.co/MITLL/LADI-v2-classifier-small) and [MITLL/LADI-v2-classifier-large](https://huggingface.co/MITLL/LADI-v2-classifier-large) models, which are trained on the full LADI v2 dataset (all splits).
 
 
 
 
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
+ The model architecture is based on Google's bit-50 model and fine-tuned on the LADI v2 dataset, which contains 10,000 aerial images labeled by volunteers from the Civil Air Patrol. The images are labeled using multi-label classification for the following classes:
24
+
25
+ - bridges_any
26
+ - buildings_any
27
+ - buildings_affected_or_greater
28
+ - buildings_minor_or_greater
29
+ - debris_any
30
+ - flooding_any
31
+ - flooding_structures
32
+ - roads_any
33
+ - roads_damage
34
+ - trees_any
35
+ - trees_damage
36
+ - water_any
37
+
38
+ This 'reference' model is trained only on the training split, which contains 8,000 images from 2015-2022. It is provided for the purpose of reproducing the results from the paper. The 'deploy' model is trained on the training, validation, and test sets, and contains 10,000 images from 2015-2023. We recommend that anyone who wishes to use this model in production use the main versions of the models [MITLL/LADI-v2-classifier-small](https://huggingface.co/MITLL/LADI-v2-classifier-small) and [MITLL/LADI-v2-classifier-large](https://huggingface.co/MITLL/LADI-v2-classifier-large).
39
+
40
+ - **Developed by:** Jeff Liu, Sam Scheele
41
+ - **Funded by:** Department of the Air Force under Air Force Contract No. FA8702-15-D-0001
42
+ - **License:** MIT
43
+ - **Finetuned from model:** [google/bit-50](https://huggingface.co/google/bit-50)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ## How to Get Started with the Model
46
 
47
+ LADI-v2-classifier-small-reference is trained to identify features of interest to disaster response managers from aerial images. Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ The simplest way to perform inference is using the pipeline interface
50
 
51
+ ```python
52
+ from transformers import pipeline
53
+ image_url = "https://fema-cap-imagery.s3.amazonaws.com/Images/CAP_-_Flooding_Spring_2023/Source/IAWG_23-B-5061/A0005/D75_0793_DxO_PL6_P.jpg"
54
 
55
+ pipe = pipeline(model="MITLL/LADI-v2-classifier-large-reference")
56
+ print(pipe(image_url))
57
+ ```
58
 
59
+ ```
60
+ [{'label': 'buildings_any', 'score': 0.9995228052139282},
61
+ {'label': 'water_any', 'score': 0.9990286827087402},
62
+ {'label': 'flooding_structures', 'score': 0.9974568486213684},
63
+ {'label': 'roads_any', 'score': 0.9963797926902771},
64
+ {'label': 'flooding_any', 'score': 0.9872690439224243}]
65
+ ```
66
 
67
+ For finer-grained control, see below:
68
 
69
+ ```python
70
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
71
+ import torch
72
+ import requests
73
+ from PIL import Image
74
+ from io import BytesIO
75
 
76
+ image_url = "https://fema-cap-imagery.s3.amazonaws.com/Images/CAP_-_Flooding_Spring_2023/Source/IAWG_23-B-5061/A0005/D75_0793_DxO_PL6_P.jpg"
77
 
78
+ img_data = requests.get(image_url).content
79
+ img = Image.open(BytesIO(img_data))
80
 
81
+ processor = AutoImageProcessor.from_pretrained("MITLL/LADI-v2-classifier-large-reference")
82
+ model = AutoModelForImageClassification.from_pretrained("MITLL/LADI-v2-classifier-large-reference")
83
 
84
+ inputs = processor(img, return_tensors="pt")
85
 
86
+ with torch.no_grad():
87
+ logits = model(**inputs).logits
88
 
89
+ predictions = torch.sigmoid(logits).detach().numpy()[0]
90
+ labels = [(model.config.id2label[idx], predictions[idx]) for idx in range(len(predictions))]
91
+ print(labels)
92
+ ```
93
 
94
+ ```
95
+ [('bridges_any', 0.9697420597076416),
96
+ ('buildings_any', 0.9995228052139282),
97
+ ('buildings_affected_or_greater', 0.9863481521606445),
98
+ ('buildings_minor_or_greater', 0.014774609357118607),
99
+ ('debris_any', 0.00019898588652722538),
100
+ ('flooding_any', 0.9872690439224243),
101
+ ('flooding_structures', 0.9974568486213684),
102
+ ('roads_any', 0.9963797926902771),
103
+ ('roads_damage', 0.879313051700592),
104
+ ('trees_any', 0.9782388210296631),
105
+ ('trees_damage', 0.7547890543937683),
106
+ ('water_any', 0.9990286827087402)]
107
+ ```
108
 
109
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
  **BibTeX:**
112
 
113
+ ```
114
+ ```
 
115
 
116
+ Paper forthcoming - watch this space for details
117
 
118
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
+ DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.
121
+
122
+ This material is based upon work supported by the Department of the Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of the Air Force.
123
+
124
+ © 2024 Massachusetts Institute of Technology.
125
+
126
+ The software/firmware is provided to you on an As-Is basis
127
+
128
+ Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.