Arnav0400 commited on
Commit
3b11e9e
1 Parent(s): 3ea6ec1

changed from llama-->llama2

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -3,20 +3,20 @@ library_name: peft
3
  datasets:
4
  - shareGPT
5
  tags:
6
- - llama
7
  inference: false
8
  pipeline_tag: text-generation
9
  ---
10
  # llama-7b-glora 🦙
11
 
12
- This model was built via parameter-efficient GLoRA finetuning of [llama-7b](https://huggingface.co/huggyllama/llama-7b) on the shareGPT dataset. We adapt only the attention layers using GLoRA.
13
 
14
- * Model license: This model is under a non-commercial license (see the LICENSE file) same as LLaMA.
15
  * GLoRA implementation: [script](https://github.com/Arnav0400/peft/blob/main/src/peft/tuners/glora.py)
16
 
17
  ## Model Description
18
 
19
- The architecture is similar to LLaMA-7B, but the bias is true for attention layers.
20
 
21
  ## Limitations and Biases
22
  _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
@@ -42,12 +42,12 @@ Basic model loading:
42
 
43
  ```python
44
  model = AutoModelForCausalLM.from_pretrained(
45
- "MBZUAI-LLM/LLaMA-7B-GLoRA-ShareGPT",
46
  use_auth_token=True,
47
  torch_dtype=torch.bfloat16,
48
  device_map="auto",
49
  )
50
- tokenizer = AutoTokenizer.from_pretrained("MBZUAI-LLM/LLaMA-7B-GLoRA-ShareGPT")
51
  ```
52
 
53
  Once loaded, the model and tokenizer can be used with the following code:
@@ -65,7 +65,7 @@ def llama_generate(
65
  Uses Hugging Face GenerationConfig defaults
66
  https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig
67
  Args:
68
- model (transformers.AutoModelForCausalLM): Falcon model for text generation
69
  tokenizer (transformers.AutoTokenizer): Tokenizer for model
70
  prompt (str): Prompt for text generation
71
  max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.
 
3
  datasets:
4
  - shareGPT
5
  tags:
6
+ - llama2
7
  inference: false
8
  pipeline_tag: text-generation
9
  ---
10
  # llama-7b-glora 🦙
11
 
12
+ This model was built via parameter-efficient GLoRA finetuning of [llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b) on the shareGPT dataset. We adapt only the attention layers using GLoRA.
13
 
14
+ * Model license: This model is under a same license (see the LICENSE file) as LLaMA2.
15
  * GLoRA implementation: [script](https://github.com/Arnav0400/peft/blob/main/src/peft/tuners/glora.py)
16
 
17
  ## Model Description
18
 
19
+ The architecture is similar to LLaMA2-7B, but the bias is true for attention layers.
20
 
21
  ## Limitations and Biases
22
  _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
 
42
 
43
  ```python
44
  model = AutoModelForCausalLM.from_pretrained(
45
+ "MBZUAI-LLM/LLaMA2-7B-GLoRA-ShareGPT",
46
  use_auth_token=True,
47
  torch_dtype=torch.bfloat16,
48
  device_map="auto",
49
  )
50
+ tokenizer = AutoTokenizer.from_pretrained("MBZUAI-LLM/LLaMA2-7B-GLoRA-ShareGPT")
51
  ```
52
 
53
  Once loaded, the model and tokenizer can be used with the following code:
 
65
  Uses Hugging Face GenerationConfig defaults
66
  https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig
67
  Args:
68
+ model (transformers.AutoModelForCausalLM): Model for text generation
69
  tokenizer (transformers.AutoTokenizer): Tokenizer for model
70
  prompt (str): Prompt for text generation
71
  max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.