|
--- |
|
license: mit |
|
base_model: FacebookAI/roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: roberta_base_twitter |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta_base_twitter |
|
|
|
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4759 |
|
- Accuracy: 0.7711 |
|
- F1 Macro: 0.7372 |
|
- F1 Micro: 0.7711 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Micro | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:| |
|
| 0.4867 | 0.37 | 50 | 0.4759 | 0.7711 | 0.7372 | 0.7711 | |
|
| 0.4633 | 0.74 | 100 | 0.4788 | 0.7711 | 0.7285 | 0.7711 | |
|
| 0.4582 | 1.1 | 150 | 0.4821 | 0.7739 | 0.7356 | 0.7739 | |
|
| 0.4642 | 1.47 | 200 | 0.4841 | 0.7592 | 0.7292 | 0.7592 | |
|
| 0.458 | 1.84 | 250 | 0.4864 | 0.7739 | 0.7369 | 0.7739 | |
|
| 0.4001 | 2.21 | 300 | 0.4867 | 0.7684 | 0.7346 | 0.7684 | |
|
| 0.443 | 2.57 | 350 | 0.4886 | 0.7601 | 0.7258 | 0.7601 | |
|
| 0.3461 | 2.94 | 400 | 0.4942 | 0.7656 | 0.7296 | 0.7656 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|