上传setup_and_upload.sh.js
Browse files#!/usr/bin/env bash
# setup_and_upload.sh
# 一键完成仓库克隆、编译、依赖安装、Git LFS 配置、模型权重上传和服务启动
# 使用前:替换 YOUR_USERNAME、YOUR_SECURE_TOKEN 和 /path/to/llama2-7b.gguf
set -e
# 1. 克隆仓库并初始化子模块
REPO_URL="https://github.com/your-username/my-chatbot-llama2-7b.git"
BRANCH="main"
echo "🚀 克隆仓库并初始化子模块"
git clone "$REPO_URL"
cd my-chatbot-llama2-7b
git checkout "$BRANCH"
git submodule update --init --recursive
# 2. 编译 llama.cpp 并安装 Python 依赖
echo "🔧 编译 llama.cpp 并安装依赖"
cd llama.cpp && make && cd ..
pip install -r requirements.txt
# 3. 安装并配置 Git LFS
echo "📦 安装并配置 Git LFS"
git lfs install
git lfs track "models/*.gguf"
# 4. 放置并上传模型权重
echo "💾 放置并上传模型权重"
mkdir -p models
cp /path/to/llama2-7b.gguf models/
git add .gitattributes models/llama2-7b.gguf
git commit -m "chore: add LLaMA2-7B model weights via LFS"
git push origin "$BRANCH"
# 5. 启动推理服务
echo "🚀 启动推理服务"
uvicorn app:app --host 0.0.0.0 --port 8000 --reload &
# 6. 测试模型推理
echo "✅ 部署完成!使用以下命令进行测试:"
echo "curl -X POST http://localhost:8000/generate -H 'Content-Type: application/json' -d '{\"prompt\": \"你好,世界!\", \"token\": \"YOUR_SECURE_TOKEN\"}'"
- setup_and_upload.sh.js +42 -0
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env bash
|
| 2 |
+
# setup_and_upload.sh
|
| 3 |
+
# 一键完成仓库克隆、编译、依赖安装、Git LFS 配置、模型权重上传和服务启动
|
| 4 |
+
# 使用前:替换 YOUR_USERNAME、YOUR_SECURE_TOKEN 和 /path/to/llama2-7b.gguf
|
| 5 |
+
|
| 6 |
+
set -e
|
| 7 |
+
|
| 8 |
+
# 1. 克隆仓库并初始化子模块
|
| 9 |
+
REPO_URL="https://github.com/your-username/my-chatbot-llama2-7b.git"
|
| 10 |
+
BRANCH="main"
|
| 11 |
+
|
| 12 |
+
echo "🚀 克隆仓库并初始化子模块"
|
| 13 |
+
git clone "$REPO_URL"
|
| 14 |
+
cd my-chatbot-llama2-7b
|
| 15 |
+
git checkout "$BRANCH"
|
| 16 |
+
git submodule update --init --recursive
|
| 17 |
+
|
| 18 |
+
# 2. 编译 llama.cpp 并安装 Python 依赖
|
| 19 |
+
echo "🔧 编译 llama.cpp 并安装依赖"
|
| 20 |
+
cd llama.cpp && make && cd ..
|
| 21 |
+
pip install -r requirements.txt
|
| 22 |
+
|
| 23 |
+
# 3. 安装并配置 Git LFS
|
| 24 |
+
echo "📦 安装并配置 Git LFS"
|
| 25 |
+
git lfs install
|
| 26 |
+
git lfs track "models/*.gguf"
|
| 27 |
+
|
| 28 |
+
# 4. 放置并上传模型权重
|
| 29 |
+
echo "💾 放置并上传模型权重"
|
| 30 |
+
mkdir -p models
|
| 31 |
+
cp /path/to/llama2-7b.gguf models/
|
| 32 |
+
git add .gitattributes models/llama2-7b.gguf
|
| 33 |
+
git commit -m "chore: add LLaMA2-7B model weights via LFS"
|
| 34 |
+
git push origin "$BRANCH"
|
| 35 |
+
|
| 36 |
+
# 5. 启动推理服务
|
| 37 |
+
echo "🚀 启动推理服务"
|
| 38 |
+
uvicorn app:app --host 0.0.0.0 --port 8000 --reload &
|
| 39 |
+
|
| 40 |
+
# 6. 测试模型推理
|
| 41 |
+
echo "✅ 部署完成!使用以下命令进行测试:"
|
| 42 |
+
echo "curl -X POST http://localhost:8000/generate -H 'Content-Type: application/json' -d '{\"prompt\": \"你好,世界!\", \"token\": \"YOUR_SECURE_TOKEN\"}'"
|