whisper-small-pl / README.md
M2LabOrg's picture
End of training
b1e9c31 verified
|
raw
history blame
2.13 kB
metadata
language:
  - pl
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper small pl - Michel Mesquita
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: pl
          split: None
          args: 'config: pl, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 24.85216766310562

Whisper small pl - Michel Mesquita

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4764
  • Wer: 24.8522

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0854 2.5757 1000 0.3000 24.1906
0.0137 5.1513 2000 0.3835 24.5255
0.0039 7.7270 3000 0.4406 24.6676
0.0023 10.3026 4000 0.4764 24.8522

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1