whisper-medium-pt / README.md
M2LabOrg's picture
End of training
d48aa62 verified
metadata
language:
  - pt
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper medium pt - Michel Mesquita
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: pt
          split: None
          args: 'config: pt, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 10.728481301693082

Whisper medium pt - Michel Mesquita

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1807
  • Wer: 10.7285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.161 0.5945 1000 0.2014 12.6973
0.0797 1.1891 2000 0.1819 11.5995
0.0664 1.7836 3000 0.1724 11.1936
0.0269 2.3781 4000 0.1807 10.7285

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1