metadata
library_name: peft
tags:
- PyTorch
- Transformers
- trl
- sft
- BitsAndBytes
- PEFT
- QLoRA
datasets:
- databricks/databricks-dolly-15k
base_model: meta-llama/Llama-2-7b-chat
model-index:
- name: llama2-7-dolly-answer
results: []
license: mit
language:
- en
llama2-7-dolly-answer
This model is a fine-tuned version of Llama-2-7b-chat-hf on the dolly dataset. Can be used in conjunction with LukeOLuck/llama2-7-dolly-query
Model description
A Fine-Tuned PEFT Adapter for the llama2 7b chat hf model Leverages FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, QLoRA: Efficient Finetuning of Quantized LLMs, and PEFT
Intended uses & limitations
Generate a safe answer based on context and a request
Training and evaluation data
Used SFTTrainer, checkout the code
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2