LukeOLuck's picture
Update README.md
5e75e69 verified
|
raw
history blame
1.83 kB
---
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
- databricks/databricks-dolly-15k
base_model: NousResearch/Llama-2-7b-chat-hf
model-index:
- name: llama2-7-dolly-answer
results: []
license: mit
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama2-7-dolly-answer
This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on the generator dataset.
Can be used in conjunction with [LukeOLuck/llama2-7-dolly-query](https://huggingface.co/LukeOLuck/llama2-7-dolly-query)
## Model description
A Fine-Tuned PEFT Adapter for the llama2 7b chat model
## Intended uses & limitations
Generate a safe answer based on context and a request
## Training and evaluation data
Used SFTTrainer, [checkout the code](https://colab.research.google.com/drive/1WYlE1fTKb0WmNx0tS1hdgtcJfZ2wdOH6?usp=sharing)
## Training procedure
[Checkout the code here](https://colab.research.google.com/drive/1WYlE1fTKb0WmNx0tS1hdgtcJfZ2wdOH6?usp=sharing)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
### Training results
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65388a56a5ab055cf2d73676/Q7PoYTON3E25lSIraJKdM.png)
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2