autoevaluator's picture
Add evaluation results on the lener_br config and validation split of lener_br
e1b3977
|
raw
history blame
4.69 kB
metadata
license: mit
language:
  - pt
tags:
  - generated_from_trainer
datasets:
  - lener_br
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bertimbau-base-lener-br-finetuned-lener-br
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: train
          args: lener_br
        metrics:
          - name: Precision
            type: precision
            value: 0.8942967409948542
          - name: Recall
            type: recall
            value: 0.8969892473118279
          - name: F1
            type: f1
            value: 0.8956409705819198
          - name: Accuracy
            type: accuracy
            value: 0.9696009264479559
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.981178408105048
            verified: true
          - name: Precision
            type: precision
            value: 0.98709417546121
            verified: true
          - name: Recall
            type: recall
            value: 0.9862996055703132
            verified: true
          - name: F1
            type: f1
            value: 0.986696730552424
            verified: true
          - name: loss
            type: loss
            value: 0.144147127866745
            verified: true
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: lener_br
          type: lener_br
          config: lener_br
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9696009264479559
            verified: true
          - name: Precision
            type: precision
            value: 0.974166236103935
            verified: true
          - name: Recall
            type: recall
            value: 0.9847359110437199
            verified: true
          - name: F1
            type: f1
            value: 0.9794225581044623
            verified: true
          - name: loss
            type: loss
            value: 0.26272761821746826
            verified: true

bertimbau-base-lener-br-finetuned-lener-br

This model is a fine-tuned version of Luciano/bertimbau-base-finetuned-lener-br on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8943
  • Recall: 0.8970
  • F1: 0.8956
  • Accuracy: 0.9696

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0678 1.0 1957 nan 0.8148 0.8882 0.8499 0.9689
0.0371 2.0 3914 nan 0.8347 0.9022 0.8671 0.9671
0.0242 3.0 5871 nan 0.8491 0.8905 0.8693 0.9716
0.0197 4.0 7828 nan 0.9014 0.8772 0.8892 0.9780
0.0135 5.0 9785 nan 0.8651 0.9060 0.8851 0.9765
0.013 6.0 11742 nan 0.8882 0.9054 0.8967 0.9767
0.0084 7.0 13699 nan 0.8559 0.9097 0.8820 0.9751
0.0069 8.0 15656 nan 0.8916 0.8828 0.8872 0.9696
0.0047 9.0 17613 nan 0.8964 0.8931 0.8948 0.9716
0.0028 10.0 19570 nan 0.8864 0.9047 0.8955 0.9691
0.0023 11.0 21527 nan 0.8860 0.9011 0.8935 0.9693
0.0009 12.0 23484 nan 0.8952 0.8987 0.8970 0.9686
0.0014 13.0 25441 nan 0.8929 0.8985 0.8957 0.9699
0.0025 14.0 27398 nan 0.8914 0.8981 0.8947 0.9700
0.001 15.0 29355 nan 0.8943 0.8970 0.8956 0.9696

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1