bert-finetuned-ner / README.md
Lreneee's picture
Training complete
91d6f02 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2326
  • Precision: 0.4345
  • Recall: 0.6512
  • F1: 0.5212
  • Accuracy: 0.9357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 63 0.4595 0.2973 0.0226 0.0421 0.9067
No log 2.0 126 0.2294 0.4714 0.5936 0.5255 0.9403
No log 3.0 189 0.2326 0.4345 0.6512 0.5212 0.9357

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.2.2
  • Datasets 3.1.0
  • Tokenizers 0.20.3