update model card README.md
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -43,9 +43,9 @@ More information needed
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
-
- learning_rate:
|
47 |
-
- train_batch_size:
|
48 |
-
- eval_batch_size:
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
|
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
|
69 |
|
70 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.7297
|
24 |
+
- Precision: 0.8417
|
25 |
+
- Recall: 0.8510
|
26 |
+
- F1: 0.8460
|
27 |
+
- Accuracy: 0.8793
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
43 |
### Training hyperparameters
|
44 |
|
45 |
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 32
|
48 |
+
- eval_batch_size: 32
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 257 | 0.4958 | 0.7757 | 0.8526 | 0.8027 | 0.8526 |
|
59 |
+
| 0.6647 | 2.0 | 514 | 0.4756 | 0.8336 | 0.8480 | 0.8386 | 0.8701 |
|
60 |
+
| 0.6647 | 3.0 | 771 | 0.4823 | 0.8197 | 0.8588 | 0.8360 | 0.8730 |
|
61 |
+
| 0.2305 | 4.0 | 1028 | 0.5479 | 0.8314 | 0.8618 | 0.8439 | 0.8735 |
|
62 |
+
| 0.2305 | 5.0 | 1285 | 0.5832 | 0.8295 | 0.8542 | 0.8401 | 0.8779 |
|
63 |
+
| 0.1282 | 6.0 | 1542 | 0.5929 | 0.8251 | 0.8627 | 0.8404 | 0.8745 |
|
64 |
+
| 0.1282 | 7.0 | 1799 | 0.7066 | 0.8476 | 0.8496 | 0.8472 | 0.8774 |
|
65 |
+
| 0.0828 | 8.0 | 2056 | 0.6873 | 0.8392 | 0.8510 | 0.8448 | 0.8764 |
|
66 |
+
| 0.0828 | 9.0 | 2313 | 0.7189 | 0.8410 | 0.8524 | 0.8461 | 0.8788 |
|
67 |
+
| 0.0566 | 10.0 | 2570 | 0.7297 | 0.8417 | 0.8510 | 0.8460 | 0.8793 |
|
68 |
|
69 |
|
70 |
### Framework versions
|