LovenOO commited on
Commit
ce92a57
·
1 Parent(s): ca2d3c8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.7575
24
- - Precision: 0.8533
25
- - Recall: 0.8477
26
- - F1: 0.8486
27
- - Accuracy: 0.8847
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 257 | 0.5635 | 0.7528 | 0.8373 | 0.7788 | 0.8439 |
59
- | 0.7607 | 2.0 | 514 | 0.5324 | 0.8060 | 0.8314 | 0.8098 | 0.8648 |
60
- | 0.7607 | 3.0 | 771 | 0.5216 | 0.8152 | 0.8475 | 0.8265 | 0.8765 |
61
- | 0.2593 | 4.0 | 1028 | 0.5493 | 0.8179 | 0.8585 | 0.8348 | 0.8823 |
62
- | 0.2593 | 5.0 | 1285 | 0.6226 | 0.8220 | 0.8419 | 0.8308 | 0.8794 |
63
- | 0.1473 | 6.0 | 1542 | 0.6677 | 0.8429 | 0.8485 | 0.8442 | 0.8818 |
64
- | 0.1473 | 7.0 | 1799 | 0.6611 | 0.8316 | 0.8481 | 0.8381 | 0.8823 |
65
- | 0.096 | 8.0 | 2056 | 0.7404 | 0.8528 | 0.8448 | 0.8478 | 0.8857 |
66
- | 0.096 | 9.0 | 2313 | 0.7401 | 0.8531 | 0.8476 | 0.8484 | 0.8862 |
67
- | 0.0642 | 10.0 | 2570 | 0.7575 | 0.8533 | 0.8477 | 0.8486 | 0.8847 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.7065
24
+ - Precision: 0.8418
25
+ - Recall: 0.8521
26
+ - F1: 0.8453
27
+ - Accuracy: 0.8838
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 257 | 0.5948 | 0.7470 | 0.8351 | 0.7753 | 0.8375 |
59
+ | 0.8584 | 2.0 | 514 | 0.5402 | 0.7946 | 0.8405 | 0.8048 | 0.8643 |
60
+ | 0.8584 | 3.0 | 771 | 0.5362 | 0.8012 | 0.8425 | 0.8164 | 0.8682 |
61
+ | 0.3181 | 4.0 | 1028 | 0.5224 | 0.8062 | 0.8622 | 0.8290 | 0.875 |
62
+ | 0.3181 | 5.0 | 1285 | 0.5766 | 0.8234 | 0.8514 | 0.8353 | 0.8769 |
63
+ | 0.1767 | 6.0 | 1542 | 0.6231 | 0.8229 | 0.8531 | 0.8363 | 0.8755 |
64
+ | 0.1767 | 7.0 | 1799 | 0.6359 | 0.8370 | 0.8576 | 0.8456 | 0.8847 |
65
+ | 0.1231 | 8.0 | 2056 | 0.6849 | 0.8391 | 0.8538 | 0.8452 | 0.8823 |
66
+ | 0.1231 | 9.0 | 2313 | 0.6961 | 0.8453 | 0.8450 | 0.8431 | 0.8823 |
67
+ | 0.0862 | 10.0 | 2570 | 0.7065 | 0.8418 | 0.8521 | 0.8453 | 0.8838 |
68
 
69
 
70
  ### Framework versions