LovenOO commited on
Commit
87b5897
·
1 Parent(s): 10de036

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -20,10 +20,10 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 0.7297
24
- - Precision: 0.8417
25
- - Recall: 0.8510
26
- - F1: 0.8460
27
  - Accuracy: 0.8793
28
 
29
  ## Model description
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
@@ -55,16 +55,16 @@ The following hyperparameters were used during training:
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
- | No log | 1.0 | 257 | 0.4958 | 0.7757 | 0.8526 | 0.8027 | 0.8526 |
59
- | 0.6647 | 2.0 | 514 | 0.4756 | 0.8336 | 0.8480 | 0.8386 | 0.8701 |
60
- | 0.6647 | 3.0 | 771 | 0.4823 | 0.8197 | 0.8588 | 0.8360 | 0.8730 |
61
- | 0.2305 | 4.0 | 1028 | 0.5479 | 0.8314 | 0.8618 | 0.8439 | 0.8735 |
62
- | 0.2305 | 5.0 | 1285 | 0.5832 | 0.8295 | 0.8542 | 0.8401 | 0.8779 |
63
- | 0.1282 | 6.0 | 1542 | 0.5929 | 0.8251 | 0.8627 | 0.8404 | 0.8745 |
64
- | 0.1282 | 7.0 | 1799 | 0.7066 | 0.8476 | 0.8496 | 0.8472 | 0.8774 |
65
- | 0.0828 | 8.0 | 2056 | 0.6873 | 0.8392 | 0.8510 | 0.8448 | 0.8764 |
66
- | 0.0828 | 9.0 | 2313 | 0.7189 | 0.8410 | 0.8524 | 0.8461 | 0.8788 |
67
- | 0.0566 | 10.0 | 2570 | 0.7297 | 0.8417 | 0.8510 | 0.8460 | 0.8793 |
68
 
69
 
70
  ### Framework versions
 
20
 
21
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.6943
24
+ - Precision: 0.8467
25
+ - Recall: 0.8562
26
+ - F1: 0.8509
27
  - Accuracy: 0.8793
28
 
29
  ## Model description
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 32
48
  - eval_batch_size: 32
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 257 | 0.5790 | 0.7659 | 0.8225 | 0.7875 | 0.8472 |
59
+ | 0.7473 | 2.0 | 514 | 0.5007 | 0.8115 | 0.8503 | 0.8264 | 0.8647 |
60
+ | 0.7473 | 3.0 | 771 | 0.4903 | 0.8007 | 0.8418 | 0.8174 | 0.8594 |
61
+ | 0.2608 | 4.0 | 1028 | 0.5370 | 0.8249 | 0.8491 | 0.8350 | 0.8657 |
62
+ | 0.2608 | 5.0 | 1285 | 0.6034 | 0.8424 | 0.8514 | 0.8455 | 0.8803 |
63
+ | 0.1543 | 6.0 | 1542 | 0.5988 | 0.8396 | 0.8565 | 0.8466 | 0.8788 |
64
+ | 0.1543 | 7.0 | 1799 | 0.6736 | 0.8486 | 0.8453 | 0.8458 | 0.8769 |
65
+ | 0.0981 | 8.0 | 2056 | 0.6476 | 0.8400 | 0.8605 | 0.8492 | 0.8788 |
66
+ | 0.0981 | 9.0 | 2313 | 0.6837 | 0.8443 | 0.8510 | 0.8469 | 0.8788 |
67
+ | 0.0713 | 10.0 | 2570 | 0.6943 | 0.8467 | 0.8562 | 0.8509 | 0.8793 |
68
 
69
 
70
  ### Framework versions