Lorius2 commited on
Commit
bd3a503
·
1 Parent(s): 9bfdae5

update model to 5M steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 252.53 +/- 17.14
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 284.77 +/- 18.77
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00bfa6c8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00bfa6c940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00bfa6c9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00bfa6ca60>", "_build": "<function ActorCriticPolicy._build at 0x7f00bfa6caf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00bfa6cb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00bfa6cc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00bfa6cca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00bfa6cd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00bfa6cdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00bfa6ce50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00bfa6cee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00bfa6a540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673463216317948922, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGawMz78N5c/B+mHPtw39b7jG2o+2tnyPQAAAAAAAAAAmngDvVYsrT/Waoa9Jkf2vtL32rwFYYS9AAAAAAAAAABNYEQ+kCYMP+gxa749F6a+LI8dubMiNr0AAAAAAAAAAFrbzT3rbVM/bvyQuhdKxb6xS5s9oBHEvQAAAAAAAAAAAH6NvBccvz/sRhu+CwFLPlothjzApAQ7AAAAAAAAAAAawGA9XBsnuvN4ijlZzsM0TXCAuj4roLgAAIA/AACAPwCd9jyp8oM/cCgRPbCCzL5Ja9A8FQkNvQAAAAAAAAAAZliWPFxDDT0kAgQ+PfoivhBMkD1+TxS6AAAAAAAAAABGjgK+BNhUP2d7uL3XVsS+07oKvvgGnDwAAAAAAAAAAA35zL0gf64/1dTfvuOIvL6hie693Tl7vgAAAAAAAAAAzaS9PdBgrz8wHe0+bm2nvsH1Az0tr28+AAAAAAAAAAAAikY++wCEP9Md8D7RcgS/uvaGPs3Y4T0AAAAAAAAAAICsBj3sabm5wAZONkx1jzHqnji5sKZ4tQAAgD8AAIA/Mx6LvH7hyj6ZYyU9z4Cbvp8RMz3JuEG9AAAAAAAAAAAWOoY+C/heP86wUj4GMNi+LIeRPvsMHb0AAAAAAAAAAJrksj2u/ay6m7XhN1JAlrRKTBq6/QL6tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbynniz17ckCUhpRSlIwBbJRNiQGMAXSUR0CgzXPC2tuDdX2UKGgGaAloD0MIXHLcKV0WcUCUhpRSlGgVTRIBaBZHQKDNqdEsrd51fZQoaAZoCWgPQwiPjquR3Y9zQJSGlFKUaBVNPwFoFkdAoM2v8Kohp3V9lChoBmgJaA9DCAVSYte2P3FAlIaUUpRoFU0UAWgWR0CgzehmGucMdX2UKGgGaAloD0MIEDy+vasBcECUhpRSlGgVTRQBaBZHQKDN+ZG8VYZ1fZQoaAZoCWgPQwgBp3fxfsZwQJSGlFKUaBVNSwFoFkdAoM4fXCj1w3V9lChoBmgJaA9DCNRJtrqcGG9AlIaUUpRoFU1DAWgWR0CgzoyFGoaUdX2UKGgGaAloD0MIY0Z4exDzbkCUhpRSlGgVTToBaBZHQKDO2HIIWxh1fZQoaAZoCWgPQwgEjgQabABvQJSGlFKUaBVNHAFoFkdAoM8SjHn2ZnV9lChoBmgJaA9DCEph3uPMm29AlIaUUpRoFU1TAWgWR0CgzyoBikO7dX2UKGgGaAloD0MIILQevsyxbUCUhpRSlGgVTQEBaBZHQKDPT5nlGPR1fZQoaAZoCWgPQwjd7XppimNwQJSGlFKUaBVL82gWR0Cgz4n8KohqdX2UKGgGaAloD0MI5BWInpRMcUCUhpRSlGgVTXQBaBZHQKDQrXeWOZN1fZQoaAZoCWgPQwh646Qw79FtQJSGlFKUaBVNKQFoFkdAoND8g+yJK3V9lChoBmgJaA9DCHB9WG/Uy3JAlIaUUpRoFUv9aBZHQKDRh7el9Bt1fZQoaAZoCWgPQwh0CBwJtJNvQJSGlFKUaBVNEQFoFkdAoNGpFEy+H3V9lChoBmgJaA9DCPlnBvGBc3JAlIaUUpRoFU0OAWgWR0Cg0dPRZ2ZBdX2UKGgGaAloD0MIiZl9HmOAcUCUhpRSlGgVTQUBaBZHQKDSI/47A+J1fZQoaAZoCWgPQwgxfhr3Ji5xQJSGlFKUaBVNJAFoFkdAoNJ1iF0xM3V9lChoBmgJaA9DCNYCe0xk+XFAlIaUUpRoFUv7aBZHQKDSeksSTQp1fZQoaAZoCWgPQwhbRBST9+VxQJSGlFKUaBVNCgFoFkdAoNNTyUcGT3V9lChoBmgJaA9DCKmEJ/Q6AXFAlIaUUpRoFU2aAWgWR0Cg02xqwhW6dX2UKGgGaAloD0MINEksKXf/cECUhpRSlGgVTVoBaBZHQKDTcNNrTH91fZQoaAZoCWgPQwi/uipQi7FvQJSGlFKUaBVNCgFoFkdAoNN0cjqv/3V9lChoBmgJaA9DCAVPIVdqIHFAlIaUUpRoFU22AWgWR0Cg07QTM7lrdX2UKGgGaAloD0MIIo0KnKyQcECUhpRSlGgVTVABaBZHQKDUG8U21lZ1fZQoaAZoCWgPQwj3Hi45rvBxQJSGlFKUaBVNQgFoFkdAoNRkUfxMFnV9lChoBmgJaA9DCEBQbts3zHBAlIaUUpRoFUvzaBZHQKDVYOUdJat1fZQoaAZoCWgPQwiiYMYUrKBwQJSGlFKUaBVNcAFoFkdAoNVhqdpZfXV9lChoBmgJaA9DCCL6tfUTlnBAlIaUUpRoFU0/AWgWR0Cg1c7iZOSGdX2UKGgGaAloD0MIAHUDBV7RcECUhpRSlGgVTQgBaBZHQKDV0sRxtHh1fZQoaAZoCWgPQwhHrwYozVFzQJSGlFKUaBVNZAFoFkdAoNa6DujRD3V9lChoBmgJaA9DCE33OqkvvW5AlIaUUpRoFU1QAWgWR0Cg15YjrzGxdX2UKGgGaAloD0MIud42U2GtcECUhpRSlGgVTQ0BaBZHQKDXwZ0jkdV1fZQoaAZoCWgPQwhcxk0NtMByQJSGlFKUaBVNRwFoFkdAoNfKV+qioXV9lChoBmgJaA9DCAexM4WOmHBAlIaUUpRoFU0iAWgWR0Cg2AumR/3GdX2UKGgGaAloD0MIx735DZMcckCUhpRSlGgVTSABaBZHQKDYHQBPsRh1fZQoaAZoCWgPQwiZYaOsX5ptQJSGlFKUaBVNJQFoFkdAoNg2fVZs9HV9lChoBmgJaA9DCA68Wu4MDnNAlIaUUpRoFU0zAWgWR0Cg2Ldkrf+CdX2UKGgGaAloD0MIAMgJE4bUcECUhpRSlGgVTbgBaBZHQKDZCjj7yhB1fZQoaAZoCWgPQwh39L9ci8VvQJSGlFKUaBVNJQFoFkdAoNlDel9Br3V9lChoBmgJaA9DCO3vbI8eM3NAlIaUUpRoFU1PAWgWR0Cg2ZnDR+jNdX2UKGgGaAloD0MI+vIC7GMkcUCUhpRSlGgVS/xoFkdAoNmgx33Yc3V9lChoBmgJaA9DCNeGinE+BXNAlIaUUpRoFU0MAWgWR0Cg2eAccU/OdX2UKGgGaAloD0MIck9Xd+wWcECUhpRSlGgVTecBaBZHQKDaTNQCSzR1fZQoaAZoCWgPQwgwn6wYbu5wQJSGlFKUaBVNFQFoFkdAoNpquSwGGHV9lChoBmgJaA9DCLuaPGW1NnBAlIaUUpRoFU0pAWgWR0Cg2qzc6/7BdX2UKGgGaAloD0MIQtKnVfQTcECUhpRSlGgVTRwBaBZHQKDl03VCojx1fZQoaAZoCWgPQwg9SE+Rw2hwQJSGlFKUaBVNDAFoFkdAoOXefseGPHV9lChoBmgJaA9DCGhBKO9j/G5AlIaUUpRoFU0OAWgWR0Cg5gVdHDrJdX2UKGgGaAloD0MIBBxClZrWcUCUhpRSlGgVS/1oFkdAoOZHvttygnV9lChoBmgJaA9DCANf0a3XKW5AlIaUUpRoFU1CAWgWR0Cg5lV3t8eCdX2UKGgGaAloD0MIDMnJxK2WckCUhpRSlGgVTXABaBZHQKDmWqJdjXp1fZQoaAZoCWgPQwgJ4jycwLJxQJSGlFKUaBVNUgFoFkdAoOa33L3bmHV9lChoBmgJaA9DCEVmLnA5Z3JAlIaUUpRoFU0JAWgWR0Cg52tMoMKDdX2UKGgGaAloD0MIyHn/H6fRbUCUhpRSlGgVTUoBaBZHQKDn8zGgi/x1fZQoaAZoCWgPQwiAYmTJnCBvQJSGlFKUaBVNJQFoFkdAoOjTk6tDD3V9lChoBmgJaA9DCIALsmV54mxAlIaUUpRoFU1xAWgWR0Cg6PsOXmeUdX2UKGgGaAloD0MIoaAUrVw5bkCUhpRSlGgVTVEBaBZHQKDpIiyprDZ1fZQoaAZoCWgPQwhhwf2AR7JwQJSGlFKUaBVN8AFoFkdAoOnkERrad3V9lChoBmgJaA9DCD6UaMljpW5AlIaUUpRoFU1eAWgWR0Cg6ga4tpVTdX2UKGgGaAloD0MIOugSDj08bkCUhpRSlGgVS/JoFkdAoOqyWJJoTXV9lChoBmgJaA9DCLRXHw99MXBAlIaUUpRoFU0CAWgWR0Cg6uzA31jBdX2UKGgGaAloD0MI1eyBVqDzcUCUhpRSlGgVTdgBaBZHQKDrTVd5Y5l1fZQoaAZoCWgPQwhiLNMvkcVxQJSGlFKUaBVNkAFoFkdAoOtS0+kgwHV9lChoBmgJaA9DCDcclgZ+tXBAlIaUUpRoFU00AWgWR0Cg62G2sq8UdX2UKGgGaAloD0MIZOlDF9Sxb0CUhpRSlGgVTRYBaBZHQKDrspXIU8F1fZQoaAZoCWgPQwi0xwvp8FtyQJSGlFKUaBVNTAFoFkdAoOvBKHwgDHV9lChoBmgJaA9DCCcVjbW/0WxAlIaUUpRoFUv9aBZHQKDr8jpLVWl1fZQoaAZoCWgPQwjX3NH/MklzQJSGlFKUaBVNgQFoFkdAoOzsdJaq0nV9lChoBmgJaA9DCJ93Y0GhWnBAlIaUUpRoFU0XAWgWR0Cg7X9+5OJtdX2UKGgGaAloD0MIEALyJdRFb0CUhpRSlGgVTSoBaBZHQKDt/n2ZiNN1fZQoaAZoCWgPQwhUyJV6FjhvQJSGlFKUaBVNAAFoFkdAoO5EDQqqfnV9lChoBmgJaA9DCLwIU5TLLXNAlIaUUpRoFU1xAWgWR0Cg7k0BOpKjdX2UKGgGaAloD0MI6+I2GkD2b0CUhpRSlGgVTTsBaBZHQKDubpudf9h1fZQoaAZoCWgPQwj6m1CIgHJwQJSGlFKUaBVNBwFoFkdAoO8Ef1YhdXV9lChoBmgJaA9DCMvz4O4s/XBAlIaUUpRoFU0vAmgWR0Cg762fTTfBdX2UKGgGaAloD0MIzT/6Js3RcECUhpRSlGgVTVgBaBZHQKDvs2+fywx1fZQoaAZoCWgPQwgpIy4AjYpwQJSGlFKUaBVNFwFoFkdAoO/vES/TLHV9lChoBmgJaA9DCBjMXyEzlnFAlIaUUpRoFU0FAWgWR0Cg8BCpFTegdX2UKGgGaAloD0MILH++LZiVckCUhpRSlGgVTT4BaBZHQKDwN531SO11fZQoaAZoCWgPQwhLAtTUcqpwQJSGlFKUaBVL/2gWR0Cg8D2MsH0LdX2UKGgGaAloD0MIONpxw+82ckCUhpRSlGgVTT0BaBZHQKDwfsEaESN1fZQoaAZoCWgPQwhwXMZNDeZuQJSGlFKUaBVNOwFoFkdAoPDvwkPcz3V9lChoBmgJaA9DCD26ERbVa3BAlIaUUpRoFU1eAWgWR0Cg8Q+nAIppdX2UKGgGaAloD0MIHnBdMSPtcECUhpRSlGgVTQYBaBZHQKDxSq7ROUN1fZQoaAZoCWgPQwiLi6Nyk0lxQJSGlFKUaBVNDgFoFkdAoPHblJYkmnV9lChoBmgJaA9DCIYBS66iB3BAlIaUUpRoFU0aAWgWR0Cg8tux8lXzdX2UKGgGaAloD0MIzQGCOXoAc0CUhpRSlGgVTQwBaBZHQKDz4Hqu8sd1fZQoaAZoCWgPQwhe2QWD66lwQJSGlFKUaBVNHQFoFkdAoPSAt4A0bnV9lChoBmgJaA9DCLOXbaftpnJAlIaUUpRoFU05AWgWR0Cg9UM0P6KtdX2UKGgGaAloD0MIJJur5nlVcECUhpRSlGgVTakBaBZHQKD1hp1RtP51fZQoaAZoCWgPQwgL0oxF07NyQJSGlFKUaBVNCAFoFkdAoPWktTUAk3V9lChoBmgJaA9DCMXkDTCzrnBAlIaUUpRoFU01AWgWR0Cg9cf7aZhKdX2UKGgGaAloD0MIhZUKKuq/cUCUhpRSlGgVTb8BaBZHQKD16hStNi91fZQoaAZoCWgPQwjZBYNrLsZxQJSGlFKUaBVNVAFoFkdAoPYGr0aqCHV9lChoBmgJaA9DCPYpx2RxqW9AlIaUUpRoFU1VAWgWR0Cg9gZ00WM1dX2UKGgGaAloD0MIt5xLcZXYcUCUhpRSlGgVTTMBaBZHQKD2OmJm/WV1fZQoaAZoCWgPQwjLK9fb5tltQJSGlFKUaBVNqQFoFkdAoPZFmpVCHHV9lChoBmgJaA9DCDSBIhbxyHBAlIaUUpRoFU3sAWgWR0Cg9l5y+6AfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00bfa6c8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00bfa6c940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00bfa6c9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00bfa6ca60>", "_build": "<function ActorCriticPolicy._build at 0x7f00bfa6caf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00bfa6cb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00bfa6cc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00bfa6cca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00bfa6cd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00bfa6cdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00bfa6ce50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00bfa6cee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00bfa6a540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673466680773380555, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAY17145K0+hrF7PjL21b77+M48WeG5PQAAAAAAAAAAU1Z8Pp/x8j7itIS+C87wvn/9cj7dE2a+AAAAAAAAAAAAkk49CbmHPuE8QL1sMdK+PYfHPA2rCrwAAAAAAAAAAAC0/b2+Lhg/7X66PE7LCL9llmC+NaSxPQAAAAAAAAAATX85vSmwTrpGUDQz8xs+MMONijq7ac+zAACAPwAAgD+Aeg+9CiK3P2knML9atPw9pIW5PDL9rjwAAAAAAAAAAGZVIz6QzCI/crKSPRn8Dr9RZmM+IX4UvQAAAAAAAAAAmn1wPDj/xD4GPs+9v8XjvtsRYLzHi4W9AAAAAAAAAACAJDe9aVAXvCoaHz4GgJU8un2AvdLMdz0AAIA/AACAPzMo8zwIX5K8X92gvtsdOjx/9AA+kt0TvQAAgD8AAIA/k90KvqZJbD/ag3a9JDcbv0KFlL4PNLA8AAAAAAAAAACaTrS9zODfPtiFAT4x4u2+4/GbvQ6/uT0AAAAAAAAAAA2O1L3sCfi5qGWEsu3aM685no46yHTwMgAAAAAAAAAAhn4MPgwsBD5mFIW+l57TvnBllj25zzK+AAAAAAAAAAAz3JC8UsesuwJTH7wFrJI8SZv3PBvxeL0AAIA/AACAP4DHsr2amp4/xrubvnF6Ir8pXGi+PjPevQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfjhIiPIqZUCUhpRSlIwBbJRN6AOMAXSUR0CvXkHYpUgkdX2UKGgGaAloD0MI53EYzJ+Jc0CUhpRSlGgVS79oFkdAr15scENe+nV9lChoBmgJaA9DCKcHBaWog3NAlIaUUpRoFUvUaBZHQK9el3g1m8N1fZQoaAZoCWgPQwjsbTMVInVwQJSGlFKUaBVL02gWR0CvXr3Zwn6VdX2UKGgGaAloD0MIEjC6vLldcUCUhpRSlGgVS79oFkdAr17O3z+WGHV9lChoBmgJaA9DCAjIl1DBz0pAlIaUUpRoFUuGaBZHQK9ezaOgg5l1fZQoaAZoCWgPQwgAcOzZ8y9yQJSGlFKUaBVL2GgWR0CvXuJxWDHwdX2UKGgGaAloD0MIGHyak9dOc0CUhpRSlGgVS9VoFkdAr18ebwz+FXV9lChoBmgJaA9DCAA5YcJoOXNAlIaUUpRoFUvlaBZHQK9fWkqMFU11fZQoaAZoCWgPQwhtA3egTrpwQJSGlFKUaBVLtmgWR0CvX2Dghr31dX2UKGgGaAloD0MIK8HicOZPckCUhpRSlGgVS+5oFkdAr1+VnPE873V9lChoBmgJaA9DCDgQkgVMIm9AlIaUUpRoFUvHaBZHQK9fpVtoBaN1fZQoaAZoCWgPQwioGr0aYN5yQJSGlFKUaBVLumgWR0CvX7x3eN1hdX2UKGgGaAloD0MIwHXFjDABckCUhpRSlGgVS9toFkdAr1/PdM0xd3V9lChoBmgJaA9DCKhSsweaBHNAlIaUUpRoFUu6aBZHQK9f7cFhXsB1fZQoaAZoCWgPQwgP8Q9bOuJxQJSGlFKUaBVLt2gWR0CvX/GdqcmTdX2UKGgGaAloD0MIc9anHNNXckCUhpRSlGgVS8poFkdAr2APZXdTHnV9lChoBmgJaA9DCPz7jAvHXnJAlIaUUpRoFUu/aBZHQK9gK08eS0V1fZQoaAZoCWgPQwgrTN9rSFZzQJSGlFKUaBVLwWgWR0CvYIBm5DqodX2UKGgGaAloD0MIpMFtbWG5ckCUhpRSlGgVS7RoFkdAr2CFIuoP1HV9lChoBmgJaA9DCJ5EhH8RgnBAlIaUUpRoFUvfaBZHQK9gomJFb3Z1fZQoaAZoCWgPQwiA1ZEjHYlxQJSGlFKUaBVL22gWR0CvapQ22oegdX2UKGgGaAloD0MI4PPDCOEAb0CUhpRSlGgVS8ZoFkdAr2q3GbTc7HV9lChoBmgJaA9DCCl3n+OjM3FAlIaUUpRoFUvaaBZHQK9rMKfnOjZ1fZQoaAZoCWgPQwj1SlmGeIFyQJSGlFKUaBVNHAFoFkdAr2s5sdkrgHV9lChoBmgJaA9DCOuoaoIo329AlIaUUpRoFUu4aBZHQK9rPIre67N1fZQoaAZoCWgPQwjnpzgOvC5vQJSGlFKUaBVLy2gWR0Cva0FcIJJHdX2UKGgGaAloD0MIG2SSkXMcc0CUhpRSlGgVS+ZoFkdAr2tIfjjrA3V9lChoBmgJaA9DCAwiUtMuK3FAlIaUUpRoFUvdaBZHQK9rev5gw491fZQoaAZoCWgPQwjvrUhM0PRxQJSGlFKUaBVLx2gWR0Cva5N/WlMzdX2UKGgGaAloD0MI/z147RKHckCUhpRSlGgVS9poFkdAr2ug1YQrc3V9lChoBmgJaA9DCCvAd5s3QG5AlIaUUpRoFUvBaBZHQK9rqT37DVJ1fZQoaAZoCWgPQwixUdZv5rBzQJSGlFKUaBVLxmgWR0Cva9NwJgLJdX2UKGgGaAloD0MIud+hKBBHckCUhpRSlGgVS8RoFkdAr2wn07KaHHV9lChoBmgJaA9DCJseFJSiI25AlIaUUpRoFUvOaBZHQK9sPBQemvZ1fZQoaAZoCWgPQwg/WMaG7qhyQJSGlFKUaBVLyWgWR0CvbFIZAIIGdX2UKGgGaAloD0MIYoTwaKM1ckCUhpRSlGgVTSoBaBZHQK9shciW3Sd1fZQoaAZoCWgPQwglzoqoSW1xQJSGlFKUaBVLyGgWR0CvbJ78Nx2jdX2UKGgGaAloD0MIRz1Eo3uKc0CUhpRSlGgVS+JoFkdAr2y6nP3SKHV9lChoBmgJaA9DCGd+NQcIVnFAlIaUUpRoFUvHaBZHQK9tF9PUKAt1fZQoaAZoCWgPQwg1QGmo0WVzQJSGlFKUaBVLzmgWR0CvbSe8XenAdX2UKGgGaAloD0MIF4OHaV8kcUCUhpRSlGgVS9VoFkdAr20xY/3WWnV9lChoBmgJaA9DCDSBIhZxJXNAlIaUUpRoFUvSaBZHQK9tOd3B55Z1fZQoaAZoCWgPQwjVer/RjoNxQJSGlFKUaBVL42gWR0CvbWjJuEVWdX2UKGgGaAloD0MIDI/9LBY0b0CUhpRSlGgVS8ZoFkdAr21wAZKnN3V9lChoBmgJaA9DCLOY2HzchW9AlIaUUpRoFUvBaBZHQK9tcXbdrO91fZQoaAZoCWgPQwjogvqWOTRzQJSGlFKUaBVL1mgWR0CvbX0LDye7dX2UKGgGaAloD0MIuOnPfqSpcUCUhpRSlGgVS7NoFkdAr22BRAKOUHV9lChoBmgJaA9DCJJ6T+X0HnJAlIaUUpRoFUvYaBZHQK9tp3NcGC91fZQoaAZoCWgPQwiCkCxggkVyQJSGlFKUaBVLy2gWR0Cvbf4b0e2edX2UKGgGaAloD0MIVoMwt3vHckCUhpRSlGgVS7xoFkdAr24DSgGr0nV9lChoBmgJaA9DCF4qNuY1T3JAlIaUUpRoFUvNaBZHQK9uFTb349J1fZQoaAZoCWgPQwg4o+ar5FF0QJSGlFKUaBVLuGgWR0CvbiofCAMEdX2UKGgGaAloD0MI2IFzRlTcckCUhpRSlGgVS9hoFkdAr26IXfqHGnV9lChoBmgJaA9DCOEIUin2A3JAlIaUUpRoFUvSaBZHQK9ul9mYjSp1fZQoaAZoCWgPQwiY+nlT0cBxQJSGlFKUaBVLtGgWR0Cvbs8YyfthdX2UKGgGaAloD0MI48PsZdtkcUCUhpRSlGgVS7toFkdAr27YNd7fHnV9lChoBmgJaA9DCCb8Uj+v7nNAlIaUUpRoFUvMaBZHQK9u+BpYcNp1fZQoaAZoCWgPQwhbI4JxMMFzQJSGlFKUaBVL4mgWR0Cvbxz9CNS7dX2UKGgGaAloD0MIINEEihjec0CUhpRSlGgVS8poFkdAr287vgFX73V9lChoBmgJaA9DCHU6kPVUbm5AlIaUUpRoFUvMaBZHQK9vhDOTq0N1fZQoaAZoCWgPQwiISbiQh0FzQJSGlFKUaBVL6WgWR0Cvb4jUd7v5dX2UKGgGaAloD0MIVyHlJ5U6c0CUhpRSlGgVS+RoFkdAr2+LXvphW3V9lChoBmgJaA9DCNVamIU2eXJAlIaUUpRoFUvvaBZHQK9vkMUAT7F1fZQoaAZoCWgPQwgRiq2gaaZxQJSGlFKUaBVL8GgWR0Cvb6tX5nDjdX2UKGgGaAloD0MITn0geeeoc0CUhpRSlGgVS8VoFkdAr2/XNmlImXV9lChoBmgJaA9DCIwVNZgGu3NAlIaUUpRoFUvOaBZHQK9v5iOvMbF1fZQoaAZoCWgPQwiughjoGiFyQJSGlFKUaBVLymgWR0CvcAiEQGwBdX2UKGgGaAloD0MIbM8sCZBWckCUhpRSlGgVS91oFkdAr3AdqtYCAHV9lChoBmgJaA9DCA6HpYFf03JAlIaUUpRoFUvKaBZHQK9wZ4QjD9B1fZQoaAZoCWgPQwjg9C7ez/txQJSGlFKUaBVLxmgWR0CvcGzx5LRKdX2UKGgGaAloD0MI6s2o+SqJcUCUhpRSlGgVS9FoFkdAr3DqSRr8BXV9lChoBmgJaA9DCG10zk/xwXJAlIaUUpRoFUvjaBZHQK9w7UDuBtl1fZQoaAZoCWgPQwhTtHIvMCRyQJSGlFKUaBVLy2gWR0CvcQSDIzWPdX2UKGgGaAloD0MIr2Ab8aQVckCUhpRSlGgVS/JoFkdAr3EbuhK15XV9lChoBmgJaA9DCDIBv0bS93JAlIaUUpRoFUvZaBZHQK9xRLDhtLt1fZQoaAZoCWgPQwgzcEBLVypyQJSGlFKUaBVLymgWR0CvcWm5MDfWdX2UKGgGaAloD0MIJSNnYU8EcUCUhpRSlGgVS8toFkdAr3FzaqS5iHV9lChoBmgJaA9DCBkCgGOPtnJAlIaUUpRoFUuraBZHQK9xf9Tgl4V1fZQoaAZoCWgPQwhd34eDBFZxQJSGlFKUaBVL0GgWR0CvcZmHpKSQdX2UKGgGaAloD0MIjnkdcUguc0CUhpRSlGgVS+FoFkdAr3GgiC8OC3V9lChoBmgJaA9DCIV4JF6eznFAlIaUUpRoFUvqaBZHQK9xrrGBFux1fZQoaAZoCWgPQwg6zm3CvZ5xQJSGlFKUaBVL2mgWR0CvcdgDaGpNdX2UKGgGaAloD0MItkjajT4ZcUCUhpRSlGgVS9FoFkdAr3H2XgLqlnV9lChoBmgJaA9DCOhsAaF1z3JAlIaUUpRoFUvKaBZHQK9x/LV4HHF1fZQoaAZoCWgPQwjnGfuSDYFxQJSGlFKUaBVLwGgWR0CvcjHjp9qldX2UKGgGaAloD0MIrrmj/yX5cUCUhpRSlGgVS8hoFkdAr3I+7xusLnV9lChoBmgJaA9DCCmxa3t7R3FAlIaUUpRoFUvAaBZHQK9yq+4b0e51fZQoaAZoCWgPQwjTFWwj3o9xQJSGlFKUaBVLvGgWR0Cvcrg8r7O3dX2UKGgGaAloD0MIv9L58GwGcUCUhpRSlGgVS99oFkdAr3L17+kxh3V9lChoBmgJaA9DCADFyJK5OnJAlIaUUpRoFUvRaBZHQK9zBMaCL/F1fZQoaAZoCWgPQwhGJAotK0hyQJSGlFKUaBVLuWgWR0CvczCKaXrudX2UKGgGaAloD0MIAd9t3rgzc0CUhpRSlGgVS8FoFkdAr3M3luFYdXV9lChoBmgJaA9DCCoBMQkXwXFAlIaUUpRoFUvKaBZHQK9zQ/9pAUt1fZQoaAZoCWgPQwgW+Ipu/apzQJSGlFKUaBVL32gWR0Cvc1GpEQXidX2UKGgGaAloD0MIeXO4VvucbkCUhpRSlGgVS8xoFkdAr3OAdIXj2nV9lChoBmgJaA9DCBqJ0Aj2fnBAlIaUUpRoFUvFaBZHQK9zf2pyZKF1fZQoaAZoCWgPQwjb39ke/ZhyQJSGlFKUaBVL1GgWR0Cvc4skQf6odX2UKGgGaAloD0MIyOwseufOcECUhpRSlGgVS79oFkdAr3O+y1NQCXV9lChoBmgJaA9DCIjaNowC3XJAlIaUUpRoFUvoaBZHQK9z/c7hegN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 252.52963789039433, "std_reward": 17.14181871739362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T19:22:22.379457"}
 
1
+ {"mean_reward": 284.7721275729098, "std_reward": 18.774667739102416, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T21:37:10.239467"}
segundo_modelo_ppo.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c97edc9b86ebf6dfff63b0ba2e87d4aa8026d9cc4842b41fcbb53a45825b36c
3
+ size 147298
segundo_modelo_ppo/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
segundo_modelo_ppo/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00bfa6c8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00bfa6c940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00bfa6c9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00bfa6ca60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f00bfa6caf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f00bfa6cb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00bfa6cc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00bfa6cca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f00bfa6cd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00bfa6cdc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00bfa6ce50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00bfa6cee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f00bfa6a540>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 5013504,
47
+ "_total_timesteps": 5000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673466680773380555,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAY17145K0+hrF7PjL21b77+M48WeG5PQAAAAAAAAAAU1Z8Pp/x8j7itIS+C87wvn/9cj7dE2a+AAAAAAAAAAAAkk49CbmHPuE8QL1sMdK+PYfHPA2rCrwAAAAAAAAAAAC0/b2+Lhg/7X66PE7LCL9llmC+NaSxPQAAAAAAAAAATX85vSmwTrpGUDQz8xs+MMONijq7ac+zAACAPwAAgD+Aeg+9CiK3P2knML9atPw9pIW5PDL9rjwAAAAAAAAAAGZVIz6QzCI/crKSPRn8Dr9RZmM+IX4UvQAAAAAAAAAAmn1wPDj/xD4GPs+9v8XjvtsRYLzHi4W9AAAAAAAAAACAJDe9aVAXvCoaHz4GgJU8un2AvdLMdz0AAIA/AACAPzMo8zwIX5K8X92gvtsdOjx/9AA+kt0TvQAAgD8AAIA/k90KvqZJbD/ag3a9JDcbv0KFlL4PNLA8AAAAAAAAAACaTrS9zODfPtiFAT4x4u2+4/GbvQ6/uT0AAAAAAAAAAA2O1L3sCfi5qGWEsu3aM685no46yHTwMgAAAAAAAAAAhn4MPgwsBD5mFIW+l57TvnBllj25zzK+AAAAAAAAAAAz3JC8UsesuwJTH7wFrJI8SZv3PBvxeL0AAIA/AACAP4DHsr2amp4/xrubvnF6Ir8pXGi+PjPevQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0027007999999999477,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfjhIiPIqZUCUhpRSlIwBbJRN6AOMAXSUR0CvXkHYpUgkdX2UKGgGaAloD0MI53EYzJ+Jc0CUhpRSlGgVS79oFkdAr15scENe+nV9lChoBmgJaA9DCKcHBaWog3NAlIaUUpRoFUvUaBZHQK9el3g1m8N1fZQoaAZoCWgPQwjsbTMVInVwQJSGlFKUaBVL02gWR0CvXr3Zwn6VdX2UKGgGaAloD0MIEjC6vLldcUCUhpRSlGgVS79oFkdAr17O3z+WGHV9lChoBmgJaA9DCAjIl1DBz0pAlIaUUpRoFUuGaBZHQK9ezaOgg5l1fZQoaAZoCWgPQwgAcOzZ8y9yQJSGlFKUaBVL2GgWR0CvXuJxWDHwdX2UKGgGaAloD0MIGHyak9dOc0CUhpRSlGgVS9VoFkdAr18ebwz+FXV9lChoBmgJaA9DCAA5YcJoOXNAlIaUUpRoFUvlaBZHQK9fWkqMFU11fZQoaAZoCWgPQwhtA3egTrpwQJSGlFKUaBVLtmgWR0CvX2Dghr31dX2UKGgGaAloD0MIK8HicOZPckCUhpRSlGgVS+5oFkdAr1+VnPE873V9lChoBmgJaA9DCDgQkgVMIm9AlIaUUpRoFUvHaBZHQK9fpVtoBaN1fZQoaAZoCWgPQwioGr0aYN5yQJSGlFKUaBVLumgWR0CvX7x3eN1hdX2UKGgGaAloD0MIwHXFjDABckCUhpRSlGgVS9toFkdAr1/PdM0xd3V9lChoBmgJaA9DCKhSsweaBHNAlIaUUpRoFUu6aBZHQK9f7cFhXsB1fZQoaAZoCWgPQwgP8Q9bOuJxQJSGlFKUaBVLt2gWR0CvX/GdqcmTdX2UKGgGaAloD0MIc9anHNNXckCUhpRSlGgVS8poFkdAr2APZXdTHnV9lChoBmgJaA9DCPz7jAvHXnJAlIaUUpRoFUu/aBZHQK9gK08eS0V1fZQoaAZoCWgPQwgrTN9rSFZzQJSGlFKUaBVLwWgWR0CvYIBm5DqodX2UKGgGaAloD0MIpMFtbWG5ckCUhpRSlGgVS7RoFkdAr2CFIuoP1HV9lChoBmgJaA9DCJ5EhH8RgnBAlIaUUpRoFUvfaBZHQK9gomJFb3Z1fZQoaAZoCWgPQwiA1ZEjHYlxQJSGlFKUaBVL22gWR0CvapQ22oegdX2UKGgGaAloD0MI4PPDCOEAb0CUhpRSlGgVS8ZoFkdAr2q3GbTc7HV9lChoBmgJaA9DCCl3n+OjM3FAlIaUUpRoFUvaaBZHQK9rMKfnOjZ1fZQoaAZoCWgPQwj1SlmGeIFyQJSGlFKUaBVNHAFoFkdAr2s5sdkrgHV9lChoBmgJaA9DCOuoaoIo329AlIaUUpRoFUu4aBZHQK9rPIre67N1fZQoaAZoCWgPQwjnpzgOvC5vQJSGlFKUaBVLy2gWR0Cva0FcIJJHdX2UKGgGaAloD0MIG2SSkXMcc0CUhpRSlGgVS+ZoFkdAr2tIfjjrA3V9lChoBmgJaA9DCAwiUtMuK3FAlIaUUpRoFUvdaBZHQK9rev5gw491fZQoaAZoCWgPQwjvrUhM0PRxQJSGlFKUaBVLx2gWR0Cva5N/WlMzdX2UKGgGaAloD0MI/z147RKHckCUhpRSlGgVS9poFkdAr2ug1YQrc3V9lChoBmgJaA9DCCvAd5s3QG5AlIaUUpRoFUvBaBZHQK9rqT37DVJ1fZQoaAZoCWgPQwixUdZv5rBzQJSGlFKUaBVLxmgWR0Cva9NwJgLJdX2UKGgGaAloD0MIud+hKBBHckCUhpRSlGgVS8RoFkdAr2wn07KaHHV9lChoBmgJaA9DCJseFJSiI25AlIaUUpRoFUvOaBZHQK9sPBQemvZ1fZQoaAZoCWgPQwg/WMaG7qhyQJSGlFKUaBVLyWgWR0CvbFIZAIIGdX2UKGgGaAloD0MIYoTwaKM1ckCUhpRSlGgVTSoBaBZHQK9shciW3Sd1fZQoaAZoCWgPQwglzoqoSW1xQJSGlFKUaBVLyGgWR0CvbJ78Nx2jdX2UKGgGaAloD0MIRz1Eo3uKc0CUhpRSlGgVS+JoFkdAr2y6nP3SKHV9lChoBmgJaA9DCGd+NQcIVnFAlIaUUpRoFUvHaBZHQK9tF9PUKAt1fZQoaAZoCWgPQwg1QGmo0WVzQJSGlFKUaBVLzmgWR0CvbSe8XenAdX2UKGgGaAloD0MIF4OHaV8kcUCUhpRSlGgVS9VoFkdAr20xY/3WWnV9lChoBmgJaA9DCDSBIhZxJXNAlIaUUpRoFUvSaBZHQK9tOd3B55Z1fZQoaAZoCWgPQwjVer/RjoNxQJSGlFKUaBVL42gWR0CvbWjJuEVWdX2UKGgGaAloD0MIDI/9LBY0b0CUhpRSlGgVS8ZoFkdAr21wAZKnN3V9lChoBmgJaA9DCLOY2HzchW9AlIaUUpRoFUvBaBZHQK9tcXbdrO91fZQoaAZoCWgPQwjogvqWOTRzQJSGlFKUaBVL1mgWR0CvbX0LDye7dX2UKGgGaAloD0MIuOnPfqSpcUCUhpRSlGgVS7NoFkdAr22BRAKOUHV9lChoBmgJaA9DCJJ6T+X0HnJAlIaUUpRoFUvYaBZHQK9tp3NcGC91fZQoaAZoCWgPQwiCkCxggkVyQJSGlFKUaBVLy2gWR0Cvbf4b0e2edX2UKGgGaAloD0MIVoMwt3vHckCUhpRSlGgVS7xoFkdAr24DSgGr0nV9lChoBmgJaA9DCF4qNuY1T3JAlIaUUpRoFUvNaBZHQK9uFTb349J1fZQoaAZoCWgPQwg4o+ar5FF0QJSGlFKUaBVLuGgWR0CvbiofCAMEdX2UKGgGaAloD0MI2IFzRlTcckCUhpRSlGgVS9hoFkdAr26IXfqHGnV9lChoBmgJaA9DCOEIUin2A3JAlIaUUpRoFUvSaBZHQK9ul9mYjSp1fZQoaAZoCWgPQwiY+nlT0cBxQJSGlFKUaBVLtGgWR0Cvbs8YyfthdX2UKGgGaAloD0MI48PsZdtkcUCUhpRSlGgVS7toFkdAr27YNd7fHnV9lChoBmgJaA9DCCb8Uj+v7nNAlIaUUpRoFUvMaBZHQK9u+BpYcNp1fZQoaAZoCWgPQwhbI4JxMMFzQJSGlFKUaBVL4mgWR0Cvbxz9CNS7dX2UKGgGaAloD0MIINEEihjec0CUhpRSlGgVS8poFkdAr287vgFX73V9lChoBmgJaA9DCHU6kPVUbm5AlIaUUpRoFUvMaBZHQK9vhDOTq0N1fZQoaAZoCWgPQwiISbiQh0FzQJSGlFKUaBVL6WgWR0Cvb4jUd7v5dX2UKGgGaAloD0MIVyHlJ5U6c0CUhpRSlGgVS+RoFkdAr2+LXvphW3V9lChoBmgJaA9DCNVamIU2eXJAlIaUUpRoFUvvaBZHQK9vkMUAT7F1fZQoaAZoCWgPQwgRiq2gaaZxQJSGlFKUaBVL8GgWR0Cvb6tX5nDjdX2UKGgGaAloD0MITn0geeeoc0CUhpRSlGgVS8VoFkdAr2/XNmlImXV9lChoBmgJaA9DCIwVNZgGu3NAlIaUUpRoFUvOaBZHQK9v5iOvMbF1fZQoaAZoCWgPQwiughjoGiFyQJSGlFKUaBVLymgWR0CvcAiEQGwBdX2UKGgGaAloD0MIbM8sCZBWckCUhpRSlGgVS91oFkdAr3AdqtYCAHV9lChoBmgJaA9DCA6HpYFf03JAlIaUUpRoFUvKaBZHQK9wZ4QjD9B1fZQoaAZoCWgPQwjg9C7ez/txQJSGlFKUaBVLxmgWR0CvcGzx5LRKdX2UKGgGaAloD0MI6s2o+SqJcUCUhpRSlGgVS9FoFkdAr3DqSRr8BXV9lChoBmgJaA9DCG10zk/xwXJAlIaUUpRoFUvjaBZHQK9w7UDuBtl1fZQoaAZoCWgPQwhTtHIvMCRyQJSGlFKUaBVLy2gWR0CvcQSDIzWPdX2UKGgGaAloD0MIr2Ab8aQVckCUhpRSlGgVS/JoFkdAr3EbuhK15XV9lChoBmgJaA9DCDIBv0bS93JAlIaUUpRoFUvZaBZHQK9xRLDhtLt1fZQoaAZoCWgPQwgzcEBLVypyQJSGlFKUaBVLymgWR0CvcWm5MDfWdX2UKGgGaAloD0MIJSNnYU8EcUCUhpRSlGgVS8toFkdAr3FzaqS5iHV9lChoBmgJaA9DCBkCgGOPtnJAlIaUUpRoFUuraBZHQK9xf9Tgl4V1fZQoaAZoCWgPQwhd34eDBFZxQJSGlFKUaBVL0GgWR0CvcZmHpKSQdX2UKGgGaAloD0MIjnkdcUguc0CUhpRSlGgVS+FoFkdAr3GgiC8OC3V9lChoBmgJaA9DCIV4JF6eznFAlIaUUpRoFUvqaBZHQK9xrrGBFux1fZQoaAZoCWgPQwg6zm3CvZ5xQJSGlFKUaBVL2mgWR0CvcdgDaGpNdX2UKGgGaAloD0MItkjajT4ZcUCUhpRSlGgVS9FoFkdAr3H2XgLqlnV9lChoBmgJaA9DCOhsAaF1z3JAlIaUUpRoFUvKaBZHQK9x/LV4HHF1fZQoaAZoCWgPQwjnGfuSDYFxQJSGlFKUaBVLwGgWR0CvcjHjp9qldX2UKGgGaAloD0MIrrmj/yX5cUCUhpRSlGgVS8hoFkdAr3I+7xusLnV9lChoBmgJaA9DCCmxa3t7R3FAlIaUUpRoFUvAaBZHQK9yq+4b0e51fZQoaAZoCWgPQwjTFWwj3o9xQJSGlFKUaBVLvGgWR0Cvcrg8r7O3dX2UKGgGaAloD0MIv9L58GwGcUCUhpRSlGgVS99oFkdAr3L17+kxh3V9lChoBmgJaA9DCADFyJK5OnJAlIaUUpRoFUvRaBZHQK9zBMaCL/F1fZQoaAZoCWgPQwhGJAotK0hyQJSGlFKUaBVLuWgWR0CvczCKaXrudX2UKGgGaAloD0MIAd9t3rgzc0CUhpRSlGgVS8FoFkdAr3M3luFYdXV9lChoBmgJaA9DCCoBMQkXwXFAlIaUUpRoFUvKaBZHQK9zQ/9pAUt1fZQoaAZoCWgPQwgW+Ipu/apzQJSGlFKUaBVL32gWR0Cvc1GpEQXidX2UKGgGaAloD0MIeXO4VvucbkCUhpRSlGgVS8xoFkdAr3OAdIXj2nV9lChoBmgJaA9DCBqJ0Aj2fnBAlIaUUpRoFUvFaBZHQK9zf2pyZKF1fZQoaAZoCWgPQwjb39ke/ZhyQJSGlFKUaBVL1GgWR0Cvc4skQf6odX2UKGgGaAloD0MIyOwseufOcECUhpRSlGgVS79oFkdAr3O+y1NQCXV9lChoBmgJaA9DCIjaNowC3XJAlIaUUpRoFUvoaBZHQK9z/c7hegN1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1224,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
segundo_modelo_ppo/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf127d21d0ae93771c02842fae3aad0a56cde24775f0c5b7513d1b66616a0818
3
+ size 87929
segundo_modelo_ppo/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:003274e9fe8e44d79372d1f603a702ea33ad6f2e7e1209b1e40c99506723da21
3
+ size 43393
segundo_modelo_ppo/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
segundo_modelo_ppo/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0