first commit
Browse files- README.md +37 -0
- config.json +1 -0
- primer_modelo_ppo.zip +3 -0
- primer_modelo_ppo/_stable_baselines3_version +1 -0
- primer_modelo_ppo/data +95 -0
- primer_modelo_ppo/policy.optimizer.pth +3 -0
- primer_modelo_ppo/policy.pth +3 -0
- primer_modelo_ppo/pytorch_variables.pth +3 -0
- primer_modelo_ppo/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 252.53 +/- 17.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f00bfa6c8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00bfa6c940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00bfa6c9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00bfa6ca60>", "_build": "<function ActorCriticPolicy._build at 0x7f00bfa6caf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f00bfa6cb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00bfa6cc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00bfa6cca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f00bfa6cd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00bfa6cdc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00bfa6ce50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00bfa6cee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f00bfa6a540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673463216317948922, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGawMz78N5c/B+mHPtw39b7jG2o+2tnyPQAAAAAAAAAAmngDvVYsrT/Waoa9Jkf2vtL32rwFYYS9AAAAAAAAAABNYEQ+kCYMP+gxa749F6a+LI8dubMiNr0AAAAAAAAAAFrbzT3rbVM/bvyQuhdKxb6xS5s9oBHEvQAAAAAAAAAAAH6NvBccvz/sRhu+CwFLPlothjzApAQ7AAAAAAAAAAAawGA9XBsnuvN4ijlZzsM0TXCAuj4roLgAAIA/AACAPwCd9jyp8oM/cCgRPbCCzL5Ja9A8FQkNvQAAAAAAAAAAZliWPFxDDT0kAgQ+PfoivhBMkD1+TxS6AAAAAAAAAABGjgK+BNhUP2d7uL3XVsS+07oKvvgGnDwAAAAAAAAAAA35zL0gf64/1dTfvuOIvL6hie693Tl7vgAAAAAAAAAAzaS9PdBgrz8wHe0+bm2nvsH1Az0tr28+AAAAAAAAAAAAikY++wCEP9Md8D7RcgS/uvaGPs3Y4T0AAAAAAAAAAICsBj3sabm5wAZONkx1jzHqnji5sKZ4tQAAgD8AAIA/Mx6LvH7hyj6ZYyU9z4Cbvp8RMz3JuEG9AAAAAAAAAAAWOoY+C/heP86wUj4GMNi+LIeRPvsMHb0AAAAAAAAAAJrksj2u/ay6m7XhN1JAlrRKTBq6/QL6tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbynniz17ckCUhpRSlIwBbJRNiQGMAXSUR0CgzXPC2tuDdX2UKGgGaAloD0MIXHLcKV0WcUCUhpRSlGgVTRIBaBZHQKDNqdEsrd51fZQoaAZoCWgPQwiPjquR3Y9zQJSGlFKUaBVNPwFoFkdAoM2v8Kohp3V9lChoBmgJaA9DCAVSYte2P3FAlIaUUpRoFU0UAWgWR0CgzehmGucMdX2UKGgGaAloD0MIEDy+vasBcECUhpRSlGgVTRQBaBZHQKDN+ZG8VYZ1fZQoaAZoCWgPQwgBp3fxfsZwQJSGlFKUaBVNSwFoFkdAoM4fXCj1w3V9lChoBmgJaA9DCNRJtrqcGG9AlIaUUpRoFU1DAWgWR0CgzoyFGoaUdX2UKGgGaAloD0MIY0Z4exDzbkCUhpRSlGgVTToBaBZHQKDO2HIIWxh1fZQoaAZoCWgPQwgEjgQabABvQJSGlFKUaBVNHAFoFkdAoM8SjHn2ZnV9lChoBmgJaA9DCEph3uPMm29AlIaUUpRoFU1TAWgWR0CgzyoBikO7dX2UKGgGaAloD0MIILQevsyxbUCUhpRSlGgVTQEBaBZHQKDPT5nlGPR1fZQoaAZoCWgPQwjd7XppimNwQJSGlFKUaBVL82gWR0Cgz4n8KohqdX2UKGgGaAloD0MI5BWInpRMcUCUhpRSlGgVTXQBaBZHQKDQrXeWOZN1fZQoaAZoCWgPQwh646Qw79FtQJSGlFKUaBVNKQFoFkdAoND8g+yJK3V9lChoBmgJaA9DCHB9WG/Uy3JAlIaUUpRoFUv9aBZHQKDRh7el9Bt1fZQoaAZoCWgPQwh0CBwJtJNvQJSGlFKUaBVNEQFoFkdAoNGpFEy+H3V9lChoBmgJaA9DCPlnBvGBc3JAlIaUUpRoFU0OAWgWR0Cg0dPRZ2ZBdX2UKGgGaAloD0MIiZl9HmOAcUCUhpRSlGgVTQUBaBZHQKDSI/47A+J1fZQoaAZoCWgPQwgxfhr3Ji5xQJSGlFKUaBVNJAFoFkdAoNJ1iF0xM3V9lChoBmgJaA9DCNYCe0xk+XFAlIaUUpRoFUv7aBZHQKDSeksSTQp1fZQoaAZoCWgPQwhbRBST9+VxQJSGlFKUaBVNCgFoFkdAoNNTyUcGT3V9lChoBmgJaA9DCKmEJ/Q6AXFAlIaUUpRoFU2aAWgWR0Cg02xqwhW6dX2UKGgGaAloD0MINEksKXf/cECUhpRSlGgVTVoBaBZHQKDTcNNrTH91fZQoaAZoCWgPQwi/uipQi7FvQJSGlFKUaBVNCgFoFkdAoNN0cjqv/3V9lChoBmgJaA9DCAVPIVdqIHFAlIaUUpRoFU22AWgWR0Cg07QTM7lrdX2UKGgGaAloD0MIIo0KnKyQcECUhpRSlGgVTVABaBZHQKDUG8U21lZ1fZQoaAZoCWgPQwj3Hi45rvBxQJSGlFKUaBVNQgFoFkdAoNRkUfxMFnV9lChoBmgJaA9DCEBQbts3zHBAlIaUUpRoFUvzaBZHQKDVYOUdJat1fZQoaAZoCWgPQwiiYMYUrKBwQJSGlFKUaBVNcAFoFkdAoNVhqdpZfXV9lChoBmgJaA9DCCL6tfUTlnBAlIaUUpRoFU0/AWgWR0Cg1c7iZOSGdX2UKGgGaAloD0MIAHUDBV7RcECUhpRSlGgVTQgBaBZHQKDV0sRxtHh1fZQoaAZoCWgPQwhHrwYozVFzQJSGlFKUaBVNZAFoFkdAoNa6DujRD3V9lChoBmgJaA9DCE33OqkvvW5AlIaUUpRoFU1QAWgWR0Cg15YjrzGxdX2UKGgGaAloD0MIud42U2GtcECUhpRSlGgVTQ0BaBZHQKDXwZ0jkdV1fZQoaAZoCWgPQwhcxk0NtMByQJSGlFKUaBVNRwFoFkdAoNfKV+qioXV9lChoBmgJaA9DCAexM4WOmHBAlIaUUpRoFU0iAWgWR0Cg2AumR/3GdX2UKGgGaAloD0MIx735DZMcckCUhpRSlGgVTSABaBZHQKDYHQBPsRh1fZQoaAZoCWgPQwiZYaOsX5ptQJSGlFKUaBVNJQFoFkdAoNg2fVZs9HV9lChoBmgJaA9DCA68Wu4MDnNAlIaUUpRoFU0zAWgWR0Cg2Ldkrf+CdX2UKGgGaAloD0MIAMgJE4bUcECUhpRSlGgVTbgBaBZHQKDZCjj7yhB1fZQoaAZoCWgPQwh39L9ci8VvQJSGlFKUaBVNJQFoFkdAoNlDel9Br3V9lChoBmgJaA9DCO3vbI8eM3NAlIaUUpRoFU1PAWgWR0Cg2ZnDR+jNdX2UKGgGaAloD0MI+vIC7GMkcUCUhpRSlGgVS/xoFkdAoNmgx33Yc3V9lChoBmgJaA9DCNeGinE+BXNAlIaUUpRoFU0MAWgWR0Cg2eAccU/OdX2UKGgGaAloD0MIck9Xd+wWcECUhpRSlGgVTecBaBZHQKDaTNQCSzR1fZQoaAZoCWgPQwgwn6wYbu5wQJSGlFKUaBVNFQFoFkdAoNpquSwGGHV9lChoBmgJaA9DCLuaPGW1NnBAlIaUUpRoFU0pAWgWR0Cg2qzc6/7BdX2UKGgGaAloD0MIQtKnVfQTcECUhpRSlGgVTRwBaBZHQKDl03VCojx1fZQoaAZoCWgPQwg9SE+Rw2hwQJSGlFKUaBVNDAFoFkdAoOXefseGPHV9lChoBmgJaA9DCGhBKO9j/G5AlIaUUpRoFU0OAWgWR0Cg5gVdHDrJdX2UKGgGaAloD0MIBBxClZrWcUCUhpRSlGgVS/1oFkdAoOZHvttygnV9lChoBmgJaA9DCANf0a3XKW5AlIaUUpRoFU1CAWgWR0Cg5lV3t8eCdX2UKGgGaAloD0MIDMnJxK2WckCUhpRSlGgVTXABaBZHQKDmWqJdjXp1fZQoaAZoCWgPQwgJ4jycwLJxQJSGlFKUaBVNUgFoFkdAoOa33L3bmHV9lChoBmgJaA9DCEVmLnA5Z3JAlIaUUpRoFU0JAWgWR0Cg52tMoMKDdX2UKGgGaAloD0MIyHn/H6fRbUCUhpRSlGgVTUoBaBZHQKDn8zGgi/x1fZQoaAZoCWgPQwiAYmTJnCBvQJSGlFKUaBVNJQFoFkdAoOjTk6tDD3V9lChoBmgJaA9DCIALsmV54mxAlIaUUpRoFU1xAWgWR0Cg6PsOXmeUdX2UKGgGaAloD0MIoaAUrVw5bkCUhpRSlGgVTVEBaBZHQKDpIiyprDZ1fZQoaAZoCWgPQwhhwf2AR7JwQJSGlFKUaBVN8AFoFkdAoOnkERrad3V9lChoBmgJaA9DCD6UaMljpW5AlIaUUpRoFU1eAWgWR0Cg6ga4tpVTdX2UKGgGaAloD0MIOugSDj08bkCUhpRSlGgVS/JoFkdAoOqyWJJoTXV9lChoBmgJaA9DCLRXHw99MXBAlIaUUpRoFU0CAWgWR0Cg6uzA31jBdX2UKGgGaAloD0MI1eyBVqDzcUCUhpRSlGgVTdgBaBZHQKDrTVd5Y5l1fZQoaAZoCWgPQwhiLNMvkcVxQJSGlFKUaBVNkAFoFkdAoOtS0+kgwHV9lChoBmgJaA9DCDcclgZ+tXBAlIaUUpRoFU00AWgWR0Cg62G2sq8UdX2UKGgGaAloD0MIZOlDF9Sxb0CUhpRSlGgVTRYBaBZHQKDrspXIU8F1fZQoaAZoCWgPQwi0xwvp8FtyQJSGlFKUaBVNTAFoFkdAoOvBKHwgDHV9lChoBmgJaA9DCCcVjbW/0WxAlIaUUpRoFUv9aBZHQKDr8jpLVWl1fZQoaAZoCWgPQwjX3NH/MklzQJSGlFKUaBVNgQFoFkdAoOzsdJaq0nV9lChoBmgJaA9DCJ93Y0GhWnBAlIaUUpRoFU0XAWgWR0Cg7X9+5OJtdX2UKGgGaAloD0MIEALyJdRFb0CUhpRSlGgVTSoBaBZHQKDt/n2ZiNN1fZQoaAZoCWgPQwhUyJV6FjhvQJSGlFKUaBVNAAFoFkdAoO5EDQqqfnV9lChoBmgJaA9DCLwIU5TLLXNAlIaUUpRoFU1xAWgWR0Cg7k0BOpKjdX2UKGgGaAloD0MI6+I2GkD2b0CUhpRSlGgVTTsBaBZHQKDubpudf9h1fZQoaAZoCWgPQwj6m1CIgHJwQJSGlFKUaBVNBwFoFkdAoO8Ef1YhdXV9lChoBmgJaA9DCMvz4O4s/XBAlIaUUpRoFU0vAmgWR0Cg762fTTfBdX2UKGgGaAloD0MIzT/6Js3RcECUhpRSlGgVTVgBaBZHQKDvs2+fywx1fZQoaAZoCWgPQwgpIy4AjYpwQJSGlFKUaBVNFwFoFkdAoO/vES/TLHV9lChoBmgJaA9DCBjMXyEzlnFAlIaUUpRoFU0FAWgWR0Cg8BCpFTegdX2UKGgGaAloD0MILH++LZiVckCUhpRSlGgVTT4BaBZHQKDwN531SO11fZQoaAZoCWgPQwhLAtTUcqpwQJSGlFKUaBVL/2gWR0Cg8D2MsH0LdX2UKGgGaAloD0MIONpxw+82ckCUhpRSlGgVTT0BaBZHQKDwfsEaESN1fZQoaAZoCWgPQwhwXMZNDeZuQJSGlFKUaBVNOwFoFkdAoPDvwkPcz3V9lChoBmgJaA9DCD26ERbVa3BAlIaUUpRoFU1eAWgWR0Cg8Q+nAIppdX2UKGgGaAloD0MIHnBdMSPtcECUhpRSlGgVTQYBaBZHQKDxSq7ROUN1fZQoaAZoCWgPQwiLi6Nyk0lxQJSGlFKUaBVNDgFoFkdAoPHblJYkmnV9lChoBmgJaA9DCIYBS66iB3BAlIaUUpRoFU0aAWgWR0Cg8tux8lXzdX2UKGgGaAloD0MIzQGCOXoAc0CUhpRSlGgVTQwBaBZHQKDz4Hqu8sd1fZQoaAZoCWgPQwhe2QWD66lwQJSGlFKUaBVNHQFoFkdAoPSAt4A0bnV9lChoBmgJaA9DCLOXbaftpnJAlIaUUpRoFU05AWgWR0Cg9UM0P6KtdX2UKGgGaAloD0MIJJur5nlVcECUhpRSlGgVTakBaBZHQKD1hp1RtP51fZQoaAZoCWgPQwgL0oxF07NyQJSGlFKUaBVNCAFoFkdAoPWktTUAk3V9lChoBmgJaA9DCMXkDTCzrnBAlIaUUpRoFU01AWgWR0Cg9cf7aZhKdX2UKGgGaAloD0MIhZUKKuq/cUCUhpRSlGgVTb8BaBZHQKD16hStNi91fZQoaAZoCWgPQwjZBYNrLsZxQJSGlFKUaBVNVAFoFkdAoPYGr0aqCHV9lChoBmgJaA9DCPYpx2RxqW9AlIaUUpRoFU1VAWgWR0Cg9gZ00WM1dX2UKGgGaAloD0MIt5xLcZXYcUCUhpRSlGgVTTMBaBZHQKD2OmJm/WV1fZQoaAZoCWgPQwjLK9fb5tltQJSGlFKUaBVNqQFoFkdAoPZFmpVCHHV9lChoBmgJaA9DCDSBIhbxyHBAlIaUUpRoFU3sAWgWR0Cg9l5y+6AfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
primer_modelo_ppo.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:977f026b4ef2e6b291fb682abcde50155ba648f07eaf16821e1fe5c2b1366314
|
3 |
+
size 147412
|
primer_modelo_ppo/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
primer_modelo_ppo/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f00bfa6c8b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f00bfa6c940>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f00bfa6c9d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f00bfa6ca60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f00bfa6caf0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f00bfa6cb80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f00bfa6cc10>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f00bfa6cca0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f00bfa6cd30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f00bfa6cdc0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f00bfa6ce50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f00bfa6cee0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f00bfa6a540>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673463216317948922,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGawMz78N5c/B+mHPtw39b7jG2o+2tnyPQAAAAAAAAAAmngDvVYsrT/Waoa9Jkf2vtL32rwFYYS9AAAAAAAAAABNYEQ+kCYMP+gxa749F6a+LI8dubMiNr0AAAAAAAAAAFrbzT3rbVM/bvyQuhdKxb6xS5s9oBHEvQAAAAAAAAAAAH6NvBccvz/sRhu+CwFLPlothjzApAQ7AAAAAAAAAAAawGA9XBsnuvN4ijlZzsM0TXCAuj4roLgAAIA/AACAPwCd9jyp8oM/cCgRPbCCzL5Ja9A8FQkNvQAAAAAAAAAAZliWPFxDDT0kAgQ+PfoivhBMkD1+TxS6AAAAAAAAAABGjgK+BNhUP2d7uL3XVsS+07oKvvgGnDwAAAAAAAAAAA35zL0gf64/1dTfvuOIvL6hie693Tl7vgAAAAAAAAAAzaS9PdBgrz8wHe0+bm2nvsH1Az0tr28+AAAAAAAAAAAAikY++wCEP9Md8D7RcgS/uvaGPs3Y4T0AAAAAAAAAAICsBj3sabm5wAZONkx1jzHqnji5sKZ4tQAAgD8AAIA/Mx6LvH7hyj6ZYyU9z4Cbvp8RMz3JuEG9AAAAAAAAAAAWOoY+C/heP86wUj4GMNi+LIeRPvsMHb0AAAAAAAAAAJrksj2u/ay6m7XhN1JAlrRKTBq6/QL6tgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbynniz17ckCUhpRSlIwBbJRNiQGMAXSUR0CgzXPC2tuDdX2UKGgGaAloD0MIXHLcKV0WcUCUhpRSlGgVTRIBaBZHQKDNqdEsrd51fZQoaAZoCWgPQwiPjquR3Y9zQJSGlFKUaBVNPwFoFkdAoM2v8Kohp3V9lChoBmgJaA9DCAVSYte2P3FAlIaUUpRoFU0UAWgWR0CgzehmGucMdX2UKGgGaAloD0MIEDy+vasBcECUhpRSlGgVTRQBaBZHQKDN+ZG8VYZ1fZQoaAZoCWgPQwgBp3fxfsZwQJSGlFKUaBVNSwFoFkdAoM4fXCj1w3V9lChoBmgJaA9DCNRJtrqcGG9AlIaUUpRoFU1DAWgWR0CgzoyFGoaUdX2UKGgGaAloD0MIY0Z4exDzbkCUhpRSlGgVTToBaBZHQKDO2HIIWxh1fZQoaAZoCWgPQwgEjgQabABvQJSGlFKUaBVNHAFoFkdAoM8SjHn2ZnV9lChoBmgJaA9DCEph3uPMm29AlIaUUpRoFU1TAWgWR0CgzyoBikO7dX2UKGgGaAloD0MIILQevsyxbUCUhpRSlGgVTQEBaBZHQKDPT5nlGPR1fZQoaAZoCWgPQwjd7XppimNwQJSGlFKUaBVL82gWR0Cgz4n8KohqdX2UKGgGaAloD0MI5BWInpRMcUCUhpRSlGgVTXQBaBZHQKDQrXeWOZN1fZQoaAZoCWgPQwh646Qw79FtQJSGlFKUaBVNKQFoFkdAoND8g+yJK3V9lChoBmgJaA9DCHB9WG/Uy3JAlIaUUpRoFUv9aBZHQKDRh7el9Bt1fZQoaAZoCWgPQwh0CBwJtJNvQJSGlFKUaBVNEQFoFkdAoNGpFEy+H3V9lChoBmgJaA9DCPlnBvGBc3JAlIaUUpRoFU0OAWgWR0Cg0dPRZ2ZBdX2UKGgGaAloD0MIiZl9HmOAcUCUhpRSlGgVTQUBaBZHQKDSI/47A+J1fZQoaAZoCWgPQwgxfhr3Ji5xQJSGlFKUaBVNJAFoFkdAoNJ1iF0xM3V9lChoBmgJaA9DCNYCe0xk+XFAlIaUUpRoFUv7aBZHQKDSeksSTQp1fZQoaAZoCWgPQwhbRBST9+VxQJSGlFKUaBVNCgFoFkdAoNNTyUcGT3V9lChoBmgJaA9DCKmEJ/Q6AXFAlIaUUpRoFU2aAWgWR0Cg02xqwhW6dX2UKGgGaAloD0MINEksKXf/cECUhpRSlGgVTVoBaBZHQKDTcNNrTH91fZQoaAZoCWgPQwi/uipQi7FvQJSGlFKUaBVNCgFoFkdAoNN0cjqv/3V9lChoBmgJaA9DCAVPIVdqIHFAlIaUUpRoFU22AWgWR0Cg07QTM7lrdX2UKGgGaAloD0MIIo0KnKyQcECUhpRSlGgVTVABaBZHQKDUG8U21lZ1fZQoaAZoCWgPQwj3Hi45rvBxQJSGlFKUaBVNQgFoFkdAoNRkUfxMFnV9lChoBmgJaA9DCEBQbts3zHBAlIaUUpRoFUvzaBZHQKDVYOUdJat1fZQoaAZoCWgPQwiiYMYUrKBwQJSGlFKUaBVNcAFoFkdAoNVhqdpZfXV9lChoBmgJaA9DCCL6tfUTlnBAlIaUUpRoFU0/AWgWR0Cg1c7iZOSGdX2UKGgGaAloD0MIAHUDBV7RcECUhpRSlGgVTQgBaBZHQKDV0sRxtHh1fZQoaAZoCWgPQwhHrwYozVFzQJSGlFKUaBVNZAFoFkdAoNa6DujRD3V9lChoBmgJaA9DCE33OqkvvW5AlIaUUpRoFU1QAWgWR0Cg15YjrzGxdX2UKGgGaAloD0MIud42U2GtcECUhpRSlGgVTQ0BaBZHQKDXwZ0jkdV1fZQoaAZoCWgPQwhcxk0NtMByQJSGlFKUaBVNRwFoFkdAoNfKV+qioXV9lChoBmgJaA9DCAexM4WOmHBAlIaUUpRoFU0iAWgWR0Cg2AumR/3GdX2UKGgGaAloD0MIx735DZMcckCUhpRSlGgVTSABaBZHQKDYHQBPsRh1fZQoaAZoCWgPQwiZYaOsX5ptQJSGlFKUaBVNJQFoFkdAoNg2fVZs9HV9lChoBmgJaA9DCA68Wu4MDnNAlIaUUpRoFU0zAWgWR0Cg2Ldkrf+CdX2UKGgGaAloD0MIAMgJE4bUcECUhpRSlGgVTbgBaBZHQKDZCjj7yhB1fZQoaAZoCWgPQwh39L9ci8VvQJSGlFKUaBVNJQFoFkdAoNlDel9Br3V9lChoBmgJaA9DCO3vbI8eM3NAlIaUUpRoFU1PAWgWR0Cg2ZnDR+jNdX2UKGgGaAloD0MI+vIC7GMkcUCUhpRSlGgVS/xoFkdAoNmgx33Yc3V9lChoBmgJaA9DCNeGinE+BXNAlIaUUpRoFU0MAWgWR0Cg2eAccU/OdX2UKGgGaAloD0MIck9Xd+wWcECUhpRSlGgVTecBaBZHQKDaTNQCSzR1fZQoaAZoCWgPQwgwn6wYbu5wQJSGlFKUaBVNFQFoFkdAoNpquSwGGHV9lChoBmgJaA9DCLuaPGW1NnBAlIaUUpRoFU0pAWgWR0Cg2qzc6/7BdX2UKGgGaAloD0MIQtKnVfQTcECUhpRSlGgVTRwBaBZHQKDl03VCojx1fZQoaAZoCWgPQwg9SE+Rw2hwQJSGlFKUaBVNDAFoFkdAoOXefseGPHV9lChoBmgJaA9DCGhBKO9j/G5AlIaUUpRoFU0OAWgWR0Cg5gVdHDrJdX2UKGgGaAloD0MIBBxClZrWcUCUhpRSlGgVS/1oFkdAoOZHvttygnV9lChoBmgJaA9DCANf0a3XKW5AlIaUUpRoFU1CAWgWR0Cg5lV3t8eCdX2UKGgGaAloD0MIDMnJxK2WckCUhpRSlGgVTXABaBZHQKDmWqJdjXp1fZQoaAZoCWgPQwgJ4jycwLJxQJSGlFKUaBVNUgFoFkdAoOa33L3bmHV9lChoBmgJaA9DCEVmLnA5Z3JAlIaUUpRoFU0JAWgWR0Cg52tMoMKDdX2UKGgGaAloD0MIyHn/H6fRbUCUhpRSlGgVTUoBaBZHQKDn8zGgi/x1fZQoaAZoCWgPQwiAYmTJnCBvQJSGlFKUaBVNJQFoFkdAoOjTk6tDD3V9lChoBmgJaA9DCIALsmV54mxAlIaUUpRoFU1xAWgWR0Cg6PsOXmeUdX2UKGgGaAloD0MIoaAUrVw5bkCUhpRSlGgVTVEBaBZHQKDpIiyprDZ1fZQoaAZoCWgPQwhhwf2AR7JwQJSGlFKUaBVN8AFoFkdAoOnkERrad3V9lChoBmgJaA9DCD6UaMljpW5AlIaUUpRoFU1eAWgWR0Cg6ga4tpVTdX2UKGgGaAloD0MIOugSDj08bkCUhpRSlGgVS/JoFkdAoOqyWJJoTXV9lChoBmgJaA9DCLRXHw99MXBAlIaUUpRoFU0CAWgWR0Cg6uzA31jBdX2UKGgGaAloD0MI1eyBVqDzcUCUhpRSlGgVTdgBaBZHQKDrTVd5Y5l1fZQoaAZoCWgPQwhiLNMvkcVxQJSGlFKUaBVNkAFoFkdAoOtS0+kgwHV9lChoBmgJaA9DCDcclgZ+tXBAlIaUUpRoFU00AWgWR0Cg62G2sq8UdX2UKGgGaAloD0MIZOlDF9Sxb0CUhpRSlGgVTRYBaBZHQKDrspXIU8F1fZQoaAZoCWgPQwi0xwvp8FtyQJSGlFKUaBVNTAFoFkdAoOvBKHwgDHV9lChoBmgJaA9DCCcVjbW/0WxAlIaUUpRoFUv9aBZHQKDr8jpLVWl1fZQoaAZoCWgPQwjX3NH/MklzQJSGlFKUaBVNgQFoFkdAoOzsdJaq0nV9lChoBmgJaA9DCJ93Y0GhWnBAlIaUUpRoFU0XAWgWR0Cg7X9+5OJtdX2UKGgGaAloD0MIEALyJdRFb0CUhpRSlGgVTSoBaBZHQKDt/n2ZiNN1fZQoaAZoCWgPQwhUyJV6FjhvQJSGlFKUaBVNAAFoFkdAoO5EDQqqfnV9lChoBmgJaA9DCLwIU5TLLXNAlIaUUpRoFU1xAWgWR0Cg7k0BOpKjdX2UKGgGaAloD0MI6+I2GkD2b0CUhpRSlGgVTTsBaBZHQKDubpudf9h1fZQoaAZoCWgPQwj6m1CIgHJwQJSGlFKUaBVNBwFoFkdAoO8Ef1YhdXV9lChoBmgJaA9DCMvz4O4s/XBAlIaUUpRoFU0vAmgWR0Cg762fTTfBdX2UKGgGaAloD0MIzT/6Js3RcECUhpRSlGgVTVgBaBZHQKDvs2+fywx1fZQoaAZoCWgPQwgpIy4AjYpwQJSGlFKUaBVNFwFoFkdAoO/vES/TLHV9lChoBmgJaA9DCBjMXyEzlnFAlIaUUpRoFU0FAWgWR0Cg8BCpFTegdX2UKGgGaAloD0MILH++LZiVckCUhpRSlGgVTT4BaBZHQKDwN531SO11fZQoaAZoCWgPQwhLAtTUcqpwQJSGlFKUaBVL/2gWR0Cg8D2MsH0LdX2UKGgGaAloD0MIONpxw+82ckCUhpRSlGgVTT0BaBZHQKDwfsEaESN1fZQoaAZoCWgPQwhwXMZNDeZuQJSGlFKUaBVNOwFoFkdAoPDvwkPcz3V9lChoBmgJaA9DCD26ERbVa3BAlIaUUpRoFU1eAWgWR0Cg8Q+nAIppdX2UKGgGaAloD0MIHnBdMSPtcECUhpRSlGgVTQYBaBZHQKDxSq7ROUN1fZQoaAZoCWgPQwiLi6Nyk0lxQJSGlFKUaBVNDgFoFkdAoPHblJYkmnV9lChoBmgJaA9DCIYBS66iB3BAlIaUUpRoFU0aAWgWR0Cg8tux8lXzdX2UKGgGaAloD0MIzQGCOXoAc0CUhpRSlGgVTQwBaBZHQKDz4Hqu8sd1fZQoaAZoCWgPQwhe2QWD66lwQJSGlFKUaBVNHQFoFkdAoPSAt4A0bnV9lChoBmgJaA9DCLOXbaftpnJAlIaUUpRoFU05AWgWR0Cg9UM0P6KtdX2UKGgGaAloD0MIJJur5nlVcECUhpRSlGgVTakBaBZHQKD1hp1RtP51fZQoaAZoCWgPQwgL0oxF07NyQJSGlFKUaBVNCAFoFkdAoPWktTUAk3V9lChoBmgJaA9DCMXkDTCzrnBAlIaUUpRoFU01AWgWR0Cg9cf7aZhKdX2UKGgGaAloD0MIhZUKKuq/cUCUhpRSlGgVTb8BaBZHQKD16hStNi91fZQoaAZoCWgPQwjZBYNrLsZxQJSGlFKUaBVNVAFoFkdAoPYGr0aqCHV9lChoBmgJaA9DCPYpx2RxqW9AlIaUUpRoFU1VAWgWR0Cg9gZ00WM1dX2UKGgGaAloD0MIt5xLcZXYcUCUhpRSlGgVTTMBaBZHQKD2OmJm/WV1fZQoaAZoCWgPQwjLK9fb5tltQJSGlFKUaBVNqQFoFkdAoPZFmpVCHHV9lChoBmgJaA9DCDSBIhbxyHBAlIaUUpRoFU3sAWgWR0Cg9l5y+6AfdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
primer_modelo_ppo/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16160173138d4d3ae2338db9150afd7d8bb05b0d31f00109e5bc6939a7902c27
|
3 |
+
size 87929
|
primer_modelo_ppo/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3548c08eca9da1740ddb9ffa20c24b259de03f53ef55c8c4bdcf68eb65d88921
|
3 |
+
size 43393
|
primer_modelo_ppo/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
primer_modelo_ppo/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (234 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 252.52963789039433, "std_reward": 17.14181871739362, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T19:22:22.379457"}
|