|
from typing import TYPE_CHECKING, Optional, Tuple |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from transformers.utils.versions import require_version |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from ..extras.logging import get_logger |
|
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms |
|
from .adapter import init_adapter |
|
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model |
|
from .utils import load_valuehead_params, register_autoclass |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel, PreTrainedTokenizer |
|
|
|
from ..hparams import FinetuningArguments, ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
require_version("transformers>=4.36.2", "To fix: pip install transformers>=4.36.2") |
|
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3") |
|
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") |
|
require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0") |
|
require_version("trl>=0.7.6", "To fix: pip install trl>=0.7.6") |
|
|
|
|
|
def load_model_and_tokenizer( |
|
model_args: "ModelArguments", |
|
finetuning_args: "FinetuningArguments", |
|
is_trainable: Optional[bool] = False, |
|
add_valuehead: Optional[bool] = False, |
|
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]: |
|
r""" |
|
Loads pretrained model and tokenizer. |
|
|
|
Support both training and inference. |
|
""" |
|
|
|
try_download_model_from_ms(model_args) |
|
|
|
config_kwargs = { |
|
"trust_remote_code": True, |
|
"cache_dir": model_args.cache_dir, |
|
"revision": model_args.model_revision, |
|
"token": model_args.hf_hub_token, |
|
} |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
use_fast=model_args.use_fast_tokenizer, |
|
split_special_tokens=model_args.split_special_tokens, |
|
padding_side="right", |
|
**config_kwargs, |
|
) |
|
patch_tokenizer(tokenizer) |
|
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) |
|
patch_config(config, tokenizer, model_args, config_kwargs, is_trainable) |
|
|
|
model = None |
|
if is_trainable and model_args.use_unsloth: |
|
require_version("unsloth", "Follow the instructions at: https://github.com/unslothai/unsloth") |
|
from unsloth import FastLlamaModel, FastMistralModel |
|
|
|
unsloth_kwargs = { |
|
"model_name": model_args.model_name_or_path, |
|
"max_seq_length": model_args.model_max_length, |
|
"dtype": model_args.compute_dtype, |
|
"load_in_4bit": model_args.quantization_bit == 4, |
|
"token": model_args.hf_hub_token, |
|
"device_map": get_current_device(), |
|
"rope_scaling": getattr(config, "rope_scaling", None), |
|
} |
|
if getattr(config, "model_type", None) == "llama": |
|
model, _ = FastLlamaModel.from_pretrained(**unsloth_kwargs) |
|
elif getattr(config, "model_type", None) == "mistral": |
|
model, _ = FastMistralModel.from_pretrained(**unsloth_kwargs) |
|
else: |
|
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None))) |
|
model_args.use_unsloth = False |
|
|
|
if model_args.adapter_name_or_path: |
|
model_args.adapter_name_or_path = None |
|
logger.warning("Unsloth does not support loading adapters.") |
|
|
|
if model is None: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
torch_dtype=model_args.compute_dtype, |
|
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), |
|
**config_kwargs, |
|
) |
|
|
|
patch_model(model, tokenizer, model_args, is_trainable) |
|
register_autoclass(config, model, tokenizer) |
|
|
|
model = init_adapter(model, model_args, finetuning_args, is_trainable) |
|
|
|
if add_valuehead: |
|
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model) |
|
patch_valuehead_model(model) |
|
|
|
if model_args.adapter_name_or_path is not None: |
|
vhead_path = model_args.adapter_name_or_path[-1] |
|
else: |
|
vhead_path = model_args.model_name_or_path |
|
|
|
vhead_params = load_valuehead_params(vhead_path, model_args) |
|
if vhead_params is not None: |
|
model.load_state_dict(vhead_params, strict=False) |
|
logger.info("Loaded valuehead from checkpoint: {}".format(vhead_path)) |
|
|
|
if not is_trainable: |
|
model.requires_grad_(False) |
|
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model |
|
model.eval() |
|
else: |
|
model.train() |
|
|
|
trainable_params, all_param = count_parameters(model) |
|
logger.info( |
|
"trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format( |
|
trainable_params, all_param, 100 * trainable_params / all_param |
|
) |
|
) |
|
|
|
if not is_trainable: |
|
logger.info("This IS expected that the trainable params is 0 if you are using model for inference only.") |
|
|
|
return model, tokenizer |
|
|