|
import asyncio |
|
import json |
|
import os |
|
from contextlib import asynccontextmanager |
|
from typing import Any, Dict, Sequence |
|
|
|
from pydantic import BaseModel |
|
|
|
from ..chat import ChatModel |
|
from ..data import Role as DataRole |
|
from ..extras.misc import torch_gc |
|
from ..extras.packages import is_fastapi_availble, is_starlette_available, is_uvicorn_available |
|
from .protocol import ( |
|
ChatCompletionMessage, |
|
ChatCompletionRequest, |
|
ChatCompletionResponse, |
|
ChatCompletionResponseChoice, |
|
ChatCompletionResponseStreamChoice, |
|
ChatCompletionResponseUsage, |
|
ChatCompletionStreamResponse, |
|
Finish, |
|
Function, |
|
FunctionCall, |
|
ModelCard, |
|
ModelList, |
|
Role, |
|
ScoreEvaluationRequest, |
|
ScoreEvaluationResponse, |
|
) |
|
|
|
|
|
if is_fastapi_availble(): |
|
from fastapi import FastAPI, HTTPException, status |
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
|
|
|
if is_starlette_available(): |
|
from sse_starlette import EventSourceResponse |
|
|
|
|
|
if is_uvicorn_available(): |
|
import uvicorn |
|
|
|
|
|
@asynccontextmanager |
|
async def lifespan(app: "FastAPI"): |
|
yield |
|
torch_gc() |
|
|
|
|
|
def dictify(data: "BaseModel") -> Dict[str, Any]: |
|
try: |
|
return data.model_dump(exclude_unset=True) |
|
except AttributeError: |
|
return data.dict(exclude_unset=True) |
|
|
|
|
|
def jsonify(data: "BaseModel") -> str: |
|
try: |
|
return json.dumps(data.model_dump(exclude_unset=True), ensure_ascii=False) |
|
except AttributeError: |
|
return data.json(exclude_unset=True, ensure_ascii=False) |
|
|
|
|
|
def create_app(chat_model: "ChatModel") -> "FastAPI": |
|
app = FastAPI(lifespan=lifespan) |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
semaphore = asyncio.Semaphore(int(os.environ.get("MAX_CONCURRENT", 1))) |
|
|
|
@app.get("/v1/models", response_model=ModelList) |
|
async def list_models(): |
|
model_card = ModelCard(id="gpt-3.5-turbo") |
|
return ModelList(data=[model_card]) |
|
|
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse, status_code=status.HTTP_200_OK) |
|
async def create_chat_completion(request: ChatCompletionRequest): |
|
if not chat_model.can_generate: |
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") |
|
|
|
if len(request.messages) == 0 or request.messages[-1].role not in [Role.USER, Role.TOOL]: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid length") |
|
|
|
messages = [dictify(message) for message in request.messages] |
|
if len(messages) and messages[0]["role"] == Role.SYSTEM: |
|
system = messages.pop(0)["content"] |
|
else: |
|
system = None |
|
|
|
if len(messages) % 2 == 0: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...") |
|
|
|
for i in range(len(messages)): |
|
if i % 2 == 0 and messages[i]["role"] not in [Role.USER, Role.TOOL]: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") |
|
elif i % 2 == 1 and messages[i]["role"] not in [Role.ASSISTANT, Role.FUNCTION]: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role") |
|
elif messages[i]["role"] == Role.TOOL: |
|
messages[i]["role"] = DataRole.OBSERVATION |
|
|
|
tool_list = request.tools |
|
if len(tool_list): |
|
try: |
|
tools = json.dumps([tool_list[0]["function"]], ensure_ascii=False) |
|
except Exception: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools") |
|
else: |
|
tools = "" |
|
|
|
async with semaphore: |
|
loop = asyncio.get_running_loop() |
|
return await loop.run_in_executor(None, chat_completion, messages, system, tools, request) |
|
|
|
def chat_completion(messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest): |
|
if request.stream: |
|
generate = stream_chat_completion(messages, system, tools, request) |
|
return EventSourceResponse(generate, media_type="text/event-stream") |
|
|
|
responses = chat_model.chat( |
|
messages, |
|
system, |
|
tools, |
|
do_sample=request.do_sample, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
max_new_tokens=request.max_tokens, |
|
num_return_sequences=request.n, |
|
) |
|
|
|
prompt_length, response_length = 0, 0 |
|
choices = [] |
|
for i, response in enumerate(responses): |
|
if tools: |
|
result = chat_model.template.format_tools.extract(response.response_text) |
|
else: |
|
result = response.response_text |
|
|
|
if isinstance(result, tuple): |
|
name, arguments = result |
|
function = Function(name=name, arguments=arguments) |
|
response_message = ChatCompletionMessage( |
|
role=Role.ASSISTANT, tool_calls=[FunctionCall(function=function)] |
|
) |
|
finish_reason = Finish.TOOL |
|
else: |
|
response_message = ChatCompletionMessage(role=Role.ASSISTANT, content=result) |
|
finish_reason = Finish.STOP if response.finish_reason == "stop" else Finish.LENGTH |
|
|
|
choices.append( |
|
ChatCompletionResponseChoice(index=i, message=response_message, finish_reason=finish_reason) |
|
) |
|
prompt_length = response.prompt_length |
|
response_length += response.response_length |
|
|
|
usage = ChatCompletionResponseUsage( |
|
prompt_tokens=prompt_length, |
|
completion_tokens=response_length, |
|
total_tokens=prompt_length + response_length, |
|
) |
|
|
|
return ChatCompletionResponse(model=request.model, choices=choices, usage=usage) |
|
|
|
def stream_chat_completion( |
|
messages: Sequence[Dict[str, str]], system: str, tools: str, request: ChatCompletionRequest |
|
): |
|
choice_data = ChatCompletionResponseStreamChoice( |
|
index=0, delta=ChatCompletionMessage(role=Role.ASSISTANT, content=""), finish_reason=None |
|
) |
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) |
|
yield jsonify(chunk) |
|
|
|
for new_text in chat_model.stream_chat( |
|
messages, |
|
system, |
|
tools, |
|
do_sample=request.do_sample, |
|
temperature=request.temperature, |
|
top_p=request.top_p, |
|
max_new_tokens=request.max_tokens, |
|
): |
|
if len(new_text) == 0: |
|
continue |
|
|
|
choice_data = ChatCompletionResponseStreamChoice( |
|
index=0, delta=ChatCompletionMessage(content=new_text), finish_reason=None |
|
) |
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) |
|
yield jsonify(chunk) |
|
|
|
choice_data = ChatCompletionResponseStreamChoice( |
|
index=0, delta=ChatCompletionMessage(), finish_reason=Finish.STOP |
|
) |
|
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) |
|
yield jsonify(chunk) |
|
yield "[DONE]" |
|
|
|
@app.post("/v1/score/evaluation", response_model=ScoreEvaluationResponse, status_code=status.HTTP_200_OK) |
|
async def create_score_evaluation(request: ScoreEvaluationRequest): |
|
if chat_model.can_generate: |
|
raise HTTPException(status_code=status.HTTP_405_METHOD_NOT_ALLOWED, detail="Not allowed") |
|
|
|
if len(request.messages) == 0: |
|
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid request") |
|
|
|
async with semaphore: |
|
loop = asyncio.get_running_loop() |
|
return await loop.run_in_executor(None, get_score, request) |
|
|
|
def get_score(request: ScoreEvaluationRequest): |
|
scores = chat_model.get_scores(request.messages, max_length=request.max_length) |
|
return ScoreEvaluationResponse(model=request.model, scores=scores) |
|
|
|
return app |
|
|
|
|
|
if __name__ == "__main__": |
|
chat_model = ChatModel() |
|
app = create_app(chat_model) |
|
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1) |
|
|