|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, TextStreamer |
|
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model |
|
import os, torch, wandb, platform, warnings |
|
from datasets import load_dataset |
|
from trl import SFTTrainer |
|
|
|
hf_token = '..........' |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('./vistral-tokenizer') |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
'Viet-Mistral/Vistral-7B-Chat', |
|
device_map="auto", |
|
token=hf_token, |
|
quantization_config=bnb_config, |
|
) |
|
ft_model = PeftModel.from_pretrained(model, CHECKPOINT_PATH) |
|
|
|
|
|
|
|
|
|
system_prompt = "Bạn là một trợ lí Tiếng Việt nhiệt tình và trung thực. Hãy luôn trả lời một cách hữu ích nhất có thể, đồng thời giữ an toàn." |
|
|
|
stop_tokens = [tokenizer.eos_token_id, tokenizer('<|im_end|>')['input_ids'].pop()] |
|
|
|
def chat_test(): |
|
conversation = [{"role": "system", "content": system_prompt }] |
|
while True: |
|
human = input("Human: ") |
|
if human.lower() == "reset": |
|
conversation = [{"role": "system", "content": system_prompt }] |
|
print("The chat history has been cleared!") |
|
continue |
|
|
|
if human.lower() == "exit": |
|
break |
|
|
|
conversation.append({"role": "user", "content": human }) |
|
formatted = tokenizer.apply_chat_template(conversation, tokenize=False) + "<|im_start|>assistant" |
|
tok = tokenizer(formatted, return_tensors="pt").to(ft_model.device) |
|
input_ids = tok['input_ids'] |
|
|
|
out_ids = ft_model.generate( |
|
input_ids=input_ids, |
|
attention_mask=tok['attention_mask'], |
|
eos_token_id=stop_tokens, |
|
max_new_tokens=50, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=40, |
|
temperature=0.1, |
|
repetition_penalty=1.05, |
|
) |
|
assistant = tokenizer.batch_decode(out_ids[:, input_ids.size(1): ], skip_special_tokens=True)[0].strip() |
|
print("Assistant: ", assistant) |
|
conversation.append({"role": "assistant", "content": assistant }) |
|
|
|
chat_test() |