LoneStriker
commited on
Commit
•
107b4f8
1
Parent(s):
dffa3ec
Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- LEGAL.md +47 -0
- LOGO.jpg +0 -0
- MODEL_LICENSE.md +47 -0
- README.md +384 -0
- codefuse-deepseek-33b-nlp.png +3 -0
- config.json +28 -0
- configuration.json +1 -0
- generation_config.json +6 -0
- output-00001-of-00003.safetensors +3 -0
- output-00002-of-00003.safetensors +3 -0
- output-00003-of-00003.safetensors +3 -0
- pytorch_model.bin.index.json +568 -0
- requirements.txt +14 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +35 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
codefuse-deepseek-33b-nlp.png filter=lfs diff=lfs merge=lfs -text
|
LEGAL.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CodeFuse COMMUNITY LICENSE AGREEMENT
|
2 |
+
CodeFuse Release Date: September 8, 2023
|
3 |
+
|
4 |
+
By clicking to agree or by using or distributing any portion or element of the Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
5 |
+
|
6 |
+
1. Definitions.
|
7 |
+
a. This CodeFuse COMMUNITY LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
8 |
+
b. "Ant" or "We" (or "Us") shall mean Ant Group.
|
9 |
+
c. "CodeFuse" shall mean the large language models (including CodeFuse-13B and CodeFuse-CodeLlaMa-34B), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, and other elements of the foregoing distributed by Us.
|
10 |
+
d. "Documentation" shall mean the specifications, manuals and documentation accompanying CodeFuse distributed by Us.
|
11 |
+
e. "Materials" shall mean, collectively, Ant's proprietary CodeFuse and Documentation (and any portion thereof) made available under this Agreement.
|
12 |
+
f. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
|
13 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
14 |
+
h. "Third Parties" (or "Third Party") shall mean individuals or legal entities that are not controlling, controlled by Us or You, or under common control with Us or You.
|
15 |
+
i. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
16 |
+
|
17 |
+
2. Grant of Rights.
|
18 |
+
You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Ant's intellectual property or other rights owned by Ant embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
|
19 |
+
|
20 |
+
3. Redistribution.
|
21 |
+
You may distribute or make the Materials or derivative works thereof available to a Third Party in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
|
22 |
+
a. You shall provide a copy of this Agreement to such Third Party;
|
23 |
+
b. if You modify the CodeFuse model, You shall provide a prominent notice, stating how You have modified the CodeFuse model, to such Third Party; and
|
24 |
+
c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "CodeFuse is licensed under the CodeFuse COMMUNITY LICENSE AGREEMENT, Copyright (c) Ant Group. All Rights Reserved."
|
25 |
+
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
26 |
+
|
27 |
+
4. Rules of Use.
|
28 |
+
You shall comply with applicable laws and regulations (including without limitation export controls or restrictions) in Your use of the Materials.
|
29 |
+
|
30 |
+
5. Intellectual Property.
|
31 |
+
a. Ant retains ownership of all intellectual property rights in and to the Materials and derivatives made by or for Ant. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by You, You are and will be the owner of such derivative works and modifications.
|
32 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Ant, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
33 |
+
c. If You commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Ant or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by You, then all licences granted to You under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
34 |
+
|
35 |
+
6. Disclaimer of Warranty and Limitation of Liability.
|
36 |
+
a. Ant is not obligated to support, update, provide training for, or develop any further version of the Materials or to grant any license thereto.
|
37 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
38 |
+
c. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE MATERIALS AND ANY OUTPUT AND RESULTS. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT OR ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, FOR ANY DIRECT, OR INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, NO MATTER HOW IT'S CAUSED OR EVEN IF ANT OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
39 |
+
d. You will defend, indemnify and hold harmless Ant from and against any claim by any Third Party arising out of or related to Your use or distribution of the Materials.
|
40 |
+
|
41 |
+
7. Survival and Termination.
|
42 |
+
a. The term of this Agreement shall commence upon Your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
43 |
+
b. We may terminate this Agreement if You breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, You must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
|
44 |
+
|
45 |
+
8. Governing Law and Jurisdiction.
|
46 |
+
a. This Agreement and any dispute arising out of or relating to it, whether in contract, tort, negligence, products liability, or otherwise, will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
47 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
LOGO.jpg
ADDED
MODEL_LICENSE.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CodeFuse COMMUNITY LICENSE AGREEMENT
|
2 |
+
CodeFuse Release Date: September 8, 2023
|
3 |
+
|
4 |
+
By clicking to agree or by using or distributing any portion or element of the Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
5 |
+
|
6 |
+
1. Definitions.
|
7 |
+
a. This CodeFuse COMMUNITY LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
8 |
+
b. "Ant" or "We" (or "Us") shall mean Ant Group.
|
9 |
+
c. "CodeFuse" shall mean the large language models (including CodeFuse-13B and CodeFuse-CodeLlaMa-34B), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, and other elements of the foregoing distributed by Us.
|
10 |
+
d. "Documentation" shall mean the specifications, manuals and documentation accompanying CodeFuse distributed by Us.
|
11 |
+
e. "Materials" shall mean, collectively, Ant's proprietary CodeFuse and Documentation (and any portion thereof) made available under this Agreement.
|
12 |
+
f. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
|
13 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
14 |
+
h. "Third Parties" (or "Third Party") shall mean individuals or legal entities that are not controlling, controlled by Us or You, or under common control with Us or You.
|
15 |
+
i. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
16 |
+
|
17 |
+
2. Grant of Rights.
|
18 |
+
You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Ant's intellectual property or other rights owned by Ant embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
|
19 |
+
|
20 |
+
3. Redistribution.
|
21 |
+
You may distribute or make the Materials or derivative works thereof available to a Third Party in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
|
22 |
+
a. You shall provide a copy of this Agreement to such Third Party;
|
23 |
+
b. if You modify the CodeFuse model, You shall provide a prominent notice, stating how You have modified the CodeFuse model, to such Third Party; and
|
24 |
+
c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "CodeFuse is licensed under the CodeFuse COMMUNITY LICENSE AGREEMENT, Copyright (c) Ant Group. All Rights Reserved."
|
25 |
+
You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
26 |
+
|
27 |
+
4. Rules of Use.
|
28 |
+
You shall comply with applicable laws and regulations (including without limitation export controls or restrictions) in Your use of the Materials.
|
29 |
+
|
30 |
+
5. Intellectual Property.
|
31 |
+
a. Ant retains ownership of all intellectual property rights in and to the Materials and derivatives made by or for Ant. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by You, You are and will be the owner of such derivative works and modifications.
|
32 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Ant, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
33 |
+
c. If You commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Ant or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by You, then all licences granted to You under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
34 |
+
|
35 |
+
6. Disclaimer of Warranty and Limitation of Liability.
|
36 |
+
a. Ant is not obligated to support, update, provide training for, or develop any further version of the Materials or to grant any license thereto.
|
37 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF TITLE, MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
38 |
+
c. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE MATERIALS AND ANY OUTPUT AND RESULTS. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT OR ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, FOR ANY DIRECT, OR INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, NO MATTER HOW IT'S CAUSED OR EVEN IF ANT OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
|
39 |
+
d. You will defend, indemnify and hold harmless Ant from and against any claim by any Third Party arising out of or related to Your use or distribution of the Materials.
|
40 |
+
|
41 |
+
7. Survival and Termination.
|
42 |
+
a. The term of this Agreement shall commence upon Your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
43 |
+
b. We may terminate this Agreement if You breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, You must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
|
44 |
+
|
45 |
+
8. Governing Law and Jurisdiction.
|
46 |
+
a. This Agreement and any dispute arising out of or relating to it, whether in contract, tort, negligence, products liability, or otherwise, will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
47 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
README.md
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tasks:
|
4 |
+
- code-generation
|
5 |
+
---
|
6 |
+
# Model Card for CodeFuse-DeepSeek-33B
|
7 |
+
![logo](LOGO.jpg)
|
8 |
+
|
9 |
+
[[中文]](#chinese) [[English]](#english)
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
<a id="english"></a>
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
|
17 |
+
CodeFuse-DeepSeek-33B is a 33B Code-LLM finetuned by QLoRA on multiple code-related tasks on the base model DeepSeek-Coder-33B.
|
18 |
+
|
19 |
+
<br>
|
20 |
+
|
21 |
+
## News and Updates
|
22 |
+
|
23 |
+
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B has been released, achieving a pass@1 (greedy decoding) score of 78.65% on HumanEval.
|
24 |
+
|
25 |
+
🔥🔥🔥 2024-01-12 CodeFuse-Mixtral-8x7B has been released, achieving a pass@1 (greedy decoding) score of 56.1% on HumanEval, which is a 15% increase compared to Mixtral-8x7b's 40%.
|
26 |
+
|
27 |
+
🔥🔥 2023-11-10 CodeFuse-CodeGeeX2-6B has been released, achieving a pass@1 (greedy decoding) score of 45.12% on HumanEval, which is a 9.22% increase compared to CodeGeeX2 35.9%.
|
28 |
+
|
29 |
+
🔥🔥 2023-10-20 CodeFuse-QWen-14B technical documentation has been released. For those interested, please refer to the CodeFuse article on our WeChat official account via the provided link.(https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw)
|
30 |
+
|
31 |
+
🔥🔥 2023-10-16 CodeFuse-QWen-14B has been released, achieving a pass@1 (greedy decoding) score of 48.78% on HumanEval, which is a 16% increase compared to Qwen-14b's 32.3%.
|
32 |
+
|
33 |
+
🔥🔥 2023-09-27 CodeFuse-StarCoder-15B has been released, achieving a pass@1 (greedy decoding) score of 54.9% on HumanEval, which is a 21% increase compared to StarCoder's 33.6%.
|
34 |
+
|
35 |
+
🔥🔥 2023-09-26 We are pleased to announce the release of the 4-bit quantized version of CodeFuse-CodeLlama-34B. Despite the quantization process, the model still achieves a remarkable 73.8% accuracy (greedy decoding) on the HumanEval pass@1 metric.
|
36 |
+
|
37 |
+
🔥🔥 2023-09-11 CodeFuse-CodeLlama-34B has achieved 74.4% of pass@1 (greedy decoding) on HumanEval, which is SOTA results for openspurced LLMs at present.
|
38 |
+
|
39 |
+
<br>
|
40 |
+
|
41 |
+
## Code Community
|
42 |
+
|
43 |
+
**Homepage**: 🏡 https://github.com/codefuse-ai (**Please give us your support with a Star🌟 + Fork🚀 + Watch👀**)
|
44 |
+
|
45 |
+
+ If you wish to fine-tune the model yourself, you can visit ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
|
46 |
+
|
47 |
+
|
48 |
+
+ If you wish to see a demo of the model, you can visit ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
|
49 |
+
|
50 |
+
<br>
|
51 |
+
|
52 |
+
## Performance
|
53 |
+
|
54 |
+
### Code
|
55 |
+
|
56 |
+
| Model | HumanEval(pass@1) | Date |
|
57 |
+
|:----------------------------|:-----------------:|:-------:|
|
58 |
+
| **CodeFuse-DeepSeek-33B** | **78.65%** | 2024.01 |
|
59 |
+
| **CodeFuse-Mixtral-8x7B** | **56.10%** | 2024.01 |
|
60 |
+
| **CodeFuse-CodeLlama-34B** | 74.4% | 2023.9 |
|
61 |
+
|**CodeFuse-CodeLlama-34B-4bits** | 73.8% | 2023.9 |
|
62 |
+
| **CodeFuse-StarCoder-15B** | 54.9% | 2023.9 |
|
63 |
+
| **CodeFuse-QWen-14B** | 48.78% | 2023.10 |
|
64 |
+
| **CodeFuse-CodeGeeX2-6B** | 45.12% | 2023.11 |
|
65 |
+
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
|
66 |
+
| GPT-4(zero-shot) | 67.0% | 2023.3 |
|
67 |
+
| PanGu-Coder2 15B | 61.6% | 2023.8 |
|
68 |
+
| CodeLlama-34b-Python | 53.7% | 2023.8 |
|
69 |
+
| CodeLlama-34b | 48.8% | 2023.8 |
|
70 |
+
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
|
71 |
+
| OctoCoder | 46.2% | 2023.8 |
|
72 |
+
| StarCoder-15B | 33.6% | 2023.5 |
|
73 |
+
| Qwen-14b | 32.3% | 2023.10 |
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
### NLP
|
79 |
+
|
80 |
+
![NLP Performance Radar](codefuse-deepseek-33b-nlp.png)
|
81 |
+
|
82 |
+
<br>
|
83 |
+
|
84 |
+
## Requirements
|
85 |
+
|
86 |
+
* python>=3.8
|
87 |
+
* pytorch>=2.0.0
|
88 |
+
* transformers>=4.33.2
|
89 |
+
* Sentencepiece
|
90 |
+
* CUDA 11.4
|
91 |
+
<br>
|
92 |
+
|
93 |
+
## Inference String Format
|
94 |
+
|
95 |
+
The inference string is a concatenated string formed by combining conversation data(system, human and bot contents) in the training data format. It is used as input during the inference process.
|
96 |
+
Here are examples of prompts used to request the model:
|
97 |
+
|
98 |
+
**Multi-Round with System Prompt:**
|
99 |
+
```python
|
100 |
+
"""
|
101 |
+
<s>system
|
102 |
+
System instruction
|
103 |
+
<s>human
|
104 |
+
Human 1st round input
|
105 |
+
<s>bot
|
106 |
+
Bot 1st round output<|end▁of▁sentence|>
|
107 |
+
<s>human
|
108 |
+
Human 2nd round input
|
109 |
+
<s>bot
|
110 |
+
Bot 2nd round output<|end▁of▁sentence|>
|
111 |
+
...
|
112 |
+
...
|
113 |
+
...
|
114 |
+
<s>human
|
115 |
+
Human nth round input
|
116 |
+
<s>bot
|
117 |
+
"""
|
118 |
+
```
|
119 |
+
|
120 |
+
**Single-Round without System Prompt:**
|
121 |
+
```python
|
122 |
+
"""
|
123 |
+
<s>human
|
124 |
+
User prompt...
|
125 |
+
<s>bot
|
126 |
+
|
127 |
+
"""
|
128 |
+
```
|
129 |
+
|
130 |
+
In this format, the system section is optional and the conversation can be either single-turn or multi-turn. When applying inference, you always make your input string end with "\<s\>bot" to ask the model generating answers.
|
131 |
+
|
132 |
+
For example, the format used to infer HumanEval is like the following:
|
133 |
+
|
134 |
+
```
|
135 |
+
<s>human
|
136 |
+
# language: Python
|
137 |
+
from typing import List
|
138 |
+
def separate_paren_groups(paren_string: str) -> List[str]:
|
139 |
+
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
|
140 |
+
separate those group into separate strings and return the list of those.
|
141 |
+
Separate groups are balanced (each open brace is properly closed) and not nested within each other
|
142 |
+
Ignore any spaces in the input string.
|
143 |
+
>>> separate_paren_groups('( ) (( )) (( )( ))')
|
144 |
+
['()', '(())', '(()())']
|
145 |
+
"""
|
146 |
+
<s>bot
|
147 |
+
|
148 |
+
```
|
149 |
+
|
150 |
+
Specifically, we also add the Programming Language Tag (e.g. "```# language: Python```" for Python) used by CodeGeex models.
|
151 |
+
|
152 |
+
## Quickstart
|
153 |
+
|
154 |
+
|
155 |
+
```python
|
156 |
+
import torch
|
157 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
158 |
+
|
159 |
+
model_dir = "codefuse-ai/CodeFuse-DeepSeek-33B"
|
160 |
+
|
161 |
+
def load_model_tokenizer(model_path):
|
162 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
163 |
+
tokenizer.eos_token = "<|end▁of▁sentence|>"
|
164 |
+
tokenizer.pad_token = "<|end▁of▁sentence|>"
|
165 |
+
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
|
166 |
+
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
167 |
+
tokenizer.padding_side = "left"
|
168 |
+
|
169 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)
|
170 |
+
return model, tokenizer
|
171 |
+
|
172 |
+
|
173 |
+
HUMAN_ROLE_START_TAG = "<s>human\n"
|
174 |
+
BOT_ROLE_START_TAG = "<s>bot\n"
|
175 |
+
|
176 |
+
text_list = [f'{HUMAN_ROLE_START_TAG}Write a QuickSort program\n#Python\n{BOT_ROLE_START_TAG}']
|
177 |
+
|
178 |
+
model, tokenizer = load_model_tokenizer(model_dir)
|
179 |
+
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
|
180 |
+
input_ids = inputs["input_ids"]
|
181 |
+
attention_mask = inputs["attention_mask"]
|
182 |
+
generation_config = GenerationConfig(
|
183 |
+
eos_token_id=tokenizer.eos_token_id,
|
184 |
+
pad_token_id=tokenizer.pad_token_id,
|
185 |
+
temperature=0.1,
|
186 |
+
max_new_tokens=512,
|
187 |
+
num_return_sequences=1,
|
188 |
+
num_beams=1,
|
189 |
+
top_p=0.95,
|
190 |
+
do_sample=False
|
191 |
+
)
|
192 |
+
outputs = model.generate(
|
193 |
+
inputs= input_ids,
|
194 |
+
attention_mask=attention_mask,
|
195 |
+
**generation_config.to_dict()
|
196 |
+
)
|
197 |
+
gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
|
198 |
+
print(gen_text[0])
|
199 |
+
```
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
<a id="chinese"></a>
|
209 |
+
|
210 |
+
## 模型简介
|
211 |
+
|
212 |
+
CodeFuse-DeepSeek-33B 是一个通过QLoRA对基座模型DeepSeek-Coder-33B进行多代码任务微调而得到的代码大模型。
|
213 |
+
<br>
|
214 |
+
|
215 |
+
## 新闻
|
216 |
+
|
217 |
+
🔥🔥🔥 2024-01-12 CodeFuse-DeepSeek-33B模型发布,模型在HumanEval pass@1指标为78.65% (贪婪解码)。
|
218 |
+
|
219 |
+
🔥🔥🔥 2023-11-10 开源了CodeFuse-CodeGeeX2-6B模型,在HumanEval pass@1(greedy decoding)上可以达到48.12%, 比CodeGeeX2提高了9.22%的代码能力(HumanEval)
|
220 |
+
|
221 |
+
🔥🔥🔥 2023-10-20 公布了CodeFuse-QWen-14B技术文档,感兴趣详见微信公众号CodeFuse文章:https://mp.weixin.qq.com/s/PCQPkvbvfxSPzsqjOILCDw
|
222 |
+
|
223 |
+
🔥🔥🔥 2023-10-16开源了CodeFuse-QWen-14B模型,在HumanEval pass@1(greedy decoding)上可以达到48.78%, 比Qwen-14b提高了16%的代码能力(HumanEval)
|
224 |
+
|
225 |
+
🔥🔥🔥 2023-09-27开源了CodeFuse-StarCoder-15B模型,在HumanEval pass@1(greedy decoding)上可以达到54.9%, 比StarCoder提高了21%的代码能力(HumanEval)
|
226 |
+
|
227 |
+
🔥🔥🔥 2023-09-26 [CodeFuse-CodeLlama-34B 4bits](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B-4bits/summary)量化版本发布,量化后模型在HumanEval pass@1指标为73.8% (贪婪解码)。
|
228 |
+
|
229 |
+
🔥🔥🔥 2023-09-11 [CodeFuse-CodeLlama-34B](https://modelscope.cn/models/codefuse-ai/CodeFuse-CodeLlama-34B/summary)发布,HumanEval pass@1指标达到74.4% (贪婪解码), 为当前开源SOTA。
|
230 |
+
|
231 |
+
<br>
|
232 |
+
|
233 |
+
## 代码社区
|
234 |
+
**大本营**: 🏡 https://github.com/codefuse-ai (**请支持我们的项目Star🌟 + Fork🚀 + Watch👀**)
|
235 |
+
|
236 |
+
+ 如果您想自己微调该模型,可以访问 ✨[MFTCoder](https://github.com/codefuse-ai/MFTCoder)✨✨
|
237 |
+
|
238 |
+
+ 如果您想观看该模型示例,可以访问 ✨[CodeFuse Demo](https://github.com/codefuse-ai/codefuse)✨✨
|
239 |
+
|
240 |
+
<br>
|
241 |
+
|
242 |
+
|
243 |
+
## 评测表现
|
244 |
+
|
245 |
+
### 代码
|
246 |
+
|
247 |
+
|
248 |
+
| 模型 | HumanEval(pass@1) | 日期 |
|
249 |
+
|:----------------------------|:-----------------:|:-------:|
|
250 |
+
| **CodeFuse-CodeLlama-34B** | 74.4% | 2023.9 |
|
251 |
+
|**CodeFuse-CodeLlama-34B-4bits** | 73.8% | 2023.9 |
|
252 |
+
| WizardCoder-Python-34B-V1.0 | 73.2% | 2023.8 |
|
253 |
+
| GPT-4(zero-shot) | 67.0% | 2023.3 |
|
254 |
+
| PanGu-Coder2 15B | 61.6% | 2023.8 |
|
255 |
+
| CodeLlama-34b-Python | 53.7% | 2023.8 |
|
256 |
+
| CodeLlama-34b | 48.8% | 2023.8 |
|
257 |
+
| GPT-3.5(zero-shot) | 48.1% | 2022.11 |
|
258 |
+
| OctoCoder | 46.2% | 2023.8 |
|
259 |
+
| StarCoder-15B | 33.6% | 2023.5 |
|
260 |
+
| Qwen-14b | 32.3% | 2023.10 |
|
261 |
+
| **CodeFuse-StarCoder-15B** | 54.9% | 2023.9 |
|
262 |
+
| **CodeFuse-QWen-14B** | 48.78% | 2023.8 |
|
263 |
+
| **CodeFuse-CodeGeeX2-6B** | 45.12% | 2023.11 |
|
264 |
+
| **CodeFuse-DeepSeek-33B**. | **78.65%** | 2024.01 |
|
265 |
+
|
266 |
+
|
267 |
+
### NLP
|
268 |
+
|
269 |
+
![NLP Performance Radar](codefuse-deepseek-33b-nlp.png)
|
270 |
+
|
271 |
+
## Requirements
|
272 |
+
|
273 |
+
* python>=3.8
|
274 |
+
* pytorch>=2.0.0
|
275 |
+
* transformers>=4.33.2
|
276 |
+
* Sentencepiece
|
277 |
+
* CUDA 11.4
|
278 |
+
<br>
|
279 |
+
|
280 |
+
## 推理数据格式
|
281 |
+
|
282 |
+
推理数据为模型在训练数据格式下拼接的字符串形式,它也是推理时输入prompt拼接的方式. 下面分别是带系统提示的多轮会话格式和不带系统提示的单轮会话格式:
|
283 |
+
|
284 |
+
**带System提示的多轮会话格式:**
|
285 |
+
```python
|
286 |
+
"""
|
287 |
+
<s>system
|
288 |
+
System instruction
|
289 |
+
<s>human
|
290 |
+
Human 1st round input
|
291 |
+
<s>bot
|
292 |
+
Bot 1st round output<|end▁of▁sentence|>
|
293 |
+
<s>human
|
294 |
+
Human 2nd round input
|
295 |
+
<s>bot
|
296 |
+
Bot 2nd round output<|end▁of▁sentence|>
|
297 |
+
...
|
298 |
+
...
|
299 |
+
...
|
300 |
+
<s>human
|
301 |
+
Human nth round input
|
302 |
+
<s>bot
|
303 |
+
"""
|
304 |
+
```
|
305 |
+
|
306 |
+
**不带System提示的单轮会话格式:**
|
307 |
+
```python
|
308 |
+
"""
|
309 |
+
<s>human
|
310 |
+
User prompt...
|
311 |
+
<s>bot
|
312 |
+
|
313 |
+
"""
|
314 |
+
```
|
315 |
+
|
316 |
+
在这个格式中,System提示是可选的(按需设定),支持单轮会话也支持多轮会话。推理时,请确保拼接的prompt字符串以"\<s\>bot\n"结尾,引导模型生成回答。
|
317 |
+
|
318 |
+
例如,推理HumanEval数据时使用的格式如下所示:
|
319 |
+
|
320 |
+
```python
|
321 |
+
<s>human
|
322 |
+
# language: Python
|
323 |
+
from typing import List
|
324 |
+
def separate_paren_groups(paren_string: str) -> List[str]:
|
325 |
+
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
|
326 |
+
separate those group into separate strings and return the list of those.
|
327 |
+
Separate groups are balanced (each open brace is properly closed) and not nested within each other
|
328 |
+
Ignore any spaces in the input string.
|
329 |
+
>>> separate_paren_groups('( ) (( )) (( )( ))')
|
330 |
+
['()', '(())', '(()())']
|
331 |
+
"""
|
332 |
+
<s>bot
|
333 |
+
|
334 |
+
```
|
335 |
+
|
336 |
+
特别地,我们也使用了CodeGeeX系列模型采用的编程语言区分标签(例如,对于Python语言,我们会使用"```# language: Python```")。
|
337 |
+
|
338 |
+
## 快速使用
|
339 |
+
|
340 |
+
```python
|
341 |
+
import torch
|
342 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
343 |
+
|
344 |
+
model_dir = "codefuse-ai/CodeFuse-DeepSeek-33B"
|
345 |
+
|
346 |
+
def load_model_tokenizer(model_path):
|
347 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
348 |
+
tokenizer.eos_token = "<|end▁of▁sentence|>"
|
349 |
+
tokenizer.pad_token = "<|end▁of▁sentence|>"
|
350 |
+
tokenizer.eos_token_id = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
|
351 |
+
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
352 |
+
tokenizer.padding_side = "left"
|
353 |
+
|
354 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='auto',torch_dtype=torch.bfloat16, trust_remote_code=True)
|
355 |
+
return model, tokenizer
|
356 |
+
|
357 |
+
HUMAN_ROLE_START_TAG = "<s>human\n"
|
358 |
+
BOT_ROLE_START_TAG = "<s>bot\n"
|
359 |
+
|
360 |
+
text_list = [f'{HUMAN_ROLE_START_TAG}请写一个快排程序\n#Python\n{BOT_ROLE_START_TAG}']
|
361 |
+
|
362 |
+
model, tokenizer = load_model_tokenizer(model_dir)
|
363 |
+
inputs = tokenizer(text_list, return_tensors='pt', padding=True, add_special_tokens=False).to('cuda')
|
364 |
+
input_ids = inputs["input_ids"]
|
365 |
+
attention_mask = inputs["attention_mask"]
|
366 |
+
generation_config = GenerationConfig(
|
367 |
+
eos_token_id=tokenizer.eos_token_id,
|
368 |
+
pad_token_id=tokenizer.pad_token_id,
|
369 |
+
temperature=0.2,
|
370 |
+
max_new_tokens=512,
|
371 |
+
num_return_sequences=1,
|
372 |
+
num_beams=1,
|
373 |
+
top_p=0.95,
|
374 |
+
do_sample=False
|
375 |
+
)
|
376 |
+
outputs = model.generate(
|
377 |
+
inputs= input_ids,
|
378 |
+
attention_mask=attention_mask,
|
379 |
+
**generation_config.to_dict()
|
380 |
+
)
|
381 |
+
gen_text = tokenizer.batch_decode(outputs[:, input_ids.shape[1]:], skip_special_tokens=True)
|
382 |
+
print(gen_text[0])
|
383 |
+
```
|
384 |
+
|
codefuse-deepseek-33b-nlp.png
ADDED
Git LFS Details
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 32013,
|
6 |
+
"eos_token_id": 32014,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 7168,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 19200,
|
11 |
+
"max_position_embeddings": 16384,
|
12 |
+
"model_type": "llama",
|
13 |
+
"num_attention_heads": 56,
|
14 |
+
"num_hidden_layers": 62,
|
15 |
+
"num_key_value_heads": 8,
|
16 |
+
"pretraining_tp": 1,
|
17 |
+
"rms_norm_eps": 1e-06,
|
18 |
+
"rope_scaling": {
|
19 |
+
"factor": 4.0,
|
20 |
+
"type": "linear"
|
21 |
+
},
|
22 |
+
"rope_theta": 100000,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.34.1",
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 32256
|
28 |
+
}
|
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework": "pytorch", "task": "text-generation", "allow_remote": true}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 32013,
|
4 |
+
"eos_token_id": 32014,
|
5 |
+
"transformers_version": "4.34.0"
|
6 |
+
}
|
output-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d46008810c22c917e59d8ada0614f044e7bed1237fa922bdb421bffbe8ac4c8
|
3 |
+
size 8536774112
|
output-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ba4f6417ac810a482974fcf46c4ffb496ee357f4aec28888859c2b22d15595e
|
3 |
+
size 8574226820
|
output-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:874be6ad2e61f65a1fb0f48dbb4bdd13b3264bd88de7011f4d3de11e35c6ca70
|
3 |
+
size 8189780800
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 66685982720
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00007-of-00007.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00007.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
242 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
251 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
260 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
269 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
278 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
287 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
296 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
305 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
314 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
323 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
324 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
325 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
326 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
327 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
328 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
329 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
330 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
331 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
332 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
333 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
334 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
335 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
336 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
337 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
338 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
339 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
340 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
341 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
342 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
343 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
344 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
345 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
346 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
347 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
348 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
349 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
350 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
351 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
352 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
353 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
354 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
355 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
356 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
357 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
358 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
359 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
360 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
361 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
362 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
363 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
364 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
365 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
366 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
367 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
368 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
369 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
370 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
371 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
372 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
373 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
374 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
375 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
376 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
377 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
378 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
379 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
380 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
381 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
382 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
383 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
384 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
385 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
386 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
387 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
388 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
389 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
390 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
391 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
392 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
393 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
394 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
395 |
+
"model.layers.48.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
396 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
397 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
398 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
399 |
+
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
400 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
401 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
402 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
403 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
404 |
+
"model.layers.49.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
405 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
406 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
407 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
408 |
+
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
409 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
410 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
411 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
412 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
413 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
414 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
415 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
416 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
417 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
418 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
419 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
420 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
421 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
422 |
+
"model.layers.50.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
423 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
424 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
425 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
426 |
+
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
427 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
428 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
429 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
430 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
431 |
+
"model.layers.51.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
432 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
433 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
434 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
435 |
+
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
436 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
437 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
438 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
439 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
440 |
+
"model.layers.52.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
441 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
442 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
443 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
444 |
+
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
445 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
446 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
447 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
448 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
449 |
+
"model.layers.53.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
450 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
451 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
452 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
453 |
+
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
454 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
455 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
456 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
457 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
458 |
+
"model.layers.54.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
459 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
460 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
461 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
462 |
+
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
463 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
464 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
465 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
466 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
467 |
+
"model.layers.55.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
468 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
469 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
470 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
471 |
+
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
472 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
473 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
474 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
475 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
476 |
+
"model.layers.56.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
477 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
478 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
479 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
480 |
+
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
481 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
482 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
483 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
484 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
485 |
+
"model.layers.57.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
486 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
487 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
488 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
489 |
+
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
490 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
491 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
492 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
493 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
494 |
+
"model.layers.58.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
495 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
496 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
497 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
498 |
+
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
499 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
500 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
501 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
502 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
503 |
+
"model.layers.59.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
504 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
505 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
506 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
507 |
+
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
508 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
509 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
510 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
511 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
512 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
513 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
514 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
515 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
516 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
517 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
518 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
519 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
520 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
521 |
+
"model.layers.60.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
522 |
+
"model.layers.60.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
523 |
+
"model.layers.60.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
524 |
+
"model.layers.60.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
525 |
+
"model.layers.60.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
526 |
+
"model.layers.60.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
527 |
+
"model.layers.60.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
528 |
+
"model.layers.60.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
529 |
+
"model.layers.60.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
530 |
+
"model.layers.61.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
531 |
+
"model.layers.61.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
532 |
+
"model.layers.61.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
533 |
+
"model.layers.61.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
534 |
+
"model.layers.61.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
535 |
+
"model.layers.61.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
536 |
+
"model.layers.61.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
537 |
+
"model.layers.61.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
538 |
+
"model.layers.61.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
539 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
540 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
541 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
542 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
543 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
544 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
545 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
546 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
547 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
548 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
549 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
550 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
551 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
552 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
553 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
554 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
555 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
556 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
557 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
558 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
559 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
560 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
561 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
562 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
563 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
564 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
565 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
566 |
+
"model.norm.weight": "pytorch_model-00007-of-00007.bin"
|
567 |
+
}
|
568 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
einops
|
4 |
+
sentencepiece
|
5 |
+
deepspeed==0.9.3
|
6 |
+
transformers==4.33.2
|
7 |
+
accelerate==0.21.0
|
8 |
+
peft==0.4.0
|
9 |
+
BitsAndBytes==0.40.2
|
10 |
+
xformers==0.0.21
|
11 |
+
ujson
|
12 |
+
jsonlines
|
13 |
+
tiktoken
|
14 |
+
transformers_stream_generator
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|begin▁of▁sentence|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|end▁of▁sentence|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 16384,
|
23 |
+
"pad_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<|end▁of▁sentence|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"sp_model_kwargs": {},
|
32 |
+
"unk_token": null,
|
33 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user' or message['role'] == 'human') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<s>system\n' + system_message + '\n' %}{% else %}{% set content = '' %}{% endif %}{% if message['role'] == 'user' or message['role'] == 'human' %}{{ content + '<s>human\n' + message['content'] + '\n' }}{% elif message['role'] == 'assistant' or message['role'] == 'bot' %}{{ '<s>bot\n' + message['content'] + '\n' + eos_token + '\n'}}{% else %}{{ raise_exception('Only user/human and assistant/bot roles are supported!') }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<s>bot\n' }}{% endif %}",
|
34 |
+
"tokenizer_class": "LlamaTokenizerFast"
|
35 |
+
}
|